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ABSTRACT

Seawater intrusion along irregular coastlines and under offshore
islands 1s a classical result of groundwater development. On a region-
al scale vertical effects, such as dispersion in the mixing zone be-
tween freshwater and seawater, and vertical flow are often negligible.
Thus a two-layer horizontal flow model is appropriate. Freshwater is
the upper layer, seawater is the lower layer, and an immiscible inter-
face between the two is assumed. The development of a numerical model
of this type is described: SWIM, a Sea Water Intrusion Model.

The finite element method with a Galerkin formulation is used to
solve the vertically integrated governing equations (following the
"hydraulic" or Dupuit approach). The model accounts for a variety of
aquifer situations that occur in the field, such as: homogeneous or
non-homogeneous and isotropic or anisotropic aquifer properties; leaky
or non-leaky and phreatic or confined status; and constant or time
varying boundary conditions, SWIM simulates situations in which the
freshwater either floats over a seawater body, forming a Zens, or lies
over a finite extent seawater wedge, defining a seawater wedge toe.

The toe movement is accurately represented using a fixed finite element
mesh, and a non-linear description of the parameters inside those ele-
ments containing a toe. Numerical experiments were performed using the
1-D gravitational segregation problem to judge the sensitivity of the
model, and particularly the toe tracking algorithm, to different param—
eters and options. Other applications and verifications of the SWIM
code are also included: classical 1-D seawater intrusion, development
of a freshwater lens over seawater, seawater intrusion in a leaky
coastal aquifer, injection of freshwater into a saline aquifer and sea-
water intrusion toward a pumping well. SWIM has demonstrated through
all of these examples that it is an accurate and efficient model of
seawater Intrusion in aquifers, whether freshwater occurs as a lens
over seawater, or as a layer over a finite length seawater wedge.
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FOREWORD TO THIS REPORT

This report 1s the first of a series of publications which describe
SWIM, a numerijcal code to simulate seawater intrusion in aquifers. .Shortly
a Users' Manual will follow.
Inquiries about SWIM and related publications should be addressed to:
Professor John L. Wilson
Room 48-209
Department of Civil Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139 U.S.A.

The Sea Grant Marine Resources Information Center maintains an
inventory of all technical and advisory publications. We invite orders

and inquiries to:

MIT Sea Grant Program

Marine Resources Information Center
77 Massachusetts Avenue

Building E38-302
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Chapter 1
GENERAL INTRODUCTiON

The growth of population in coastal areas and on offshore islands,
along with a corresponding growth of recreational, agricultural and
industrial activities, has created an increasing demand for freshwater.
Often this increase in demand 1s satisfied by a more intensive pumping
of groundwater, upsetting the long term natural balance of freshwater
flowing underground to the sea, and the heavier underlying wedge of
seawater. As a consequence the seawater wedge advances inland, en~-
croaching on the underground supply of freshwater and threatening its

availability with contamination by brackish water.

1.1 Sea Water Intrusion Modeling for Aquifers

Physical, analytical and numerical models have been used to evalu-
ate various groundwater management schemes, and to predict their
effect on seawater intrusion. Physical models for seawater intrusion
are primarily of the Hele-Shaw type, and are quite expensive to build
and calibrate. Once built they represent only one particular location
and situation. The use of this approach for applied modeling has de-
creased with the advent of high speed digital computers and the devel-
opment of numerical models. Analytical models are used for feasibility
studies and, along with physical models, serve as a term of comparison
for the calibration and verification of numerical models. All three
model types use some form of the governing differential equatiomns for
predicting the behavior of an aquifer. These equations, with the

appropriate boundary and initial conditions, constitute a mathematical
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gtatement which is a conceptualization of the field situation. Solu~—
tions of these models have been suécéssfully applied to the evaluation

of many coastal aquifer problems (e.g., see literature reviews in Chapter
2 and Bear,1970, 1972 and 1979).

Analytical models are only able to represent simplified aquifer
conditions: for example, simple geometry, a homogeneous and iso-
tropic aquifer, constant head and flow boundary conditions, and in
many cases, steady state flow. However, they can be quickly imple-
mented, with no special requirements except a pencil and paper, and
glve a reasonable first order approximation for many situationms.

Numerical methods, implemented on high speed computers, are more
general in their applicability, and have been used to successfully
obtain solutions for very complex aquifer situations (see, e.g.,
Shamir and Dagan, 1971; Pinder and Page, 1976; and reviews 1in
Bear, 1979; Peaceman, 1977; and Pinder and Gray, 1977). A numerical
model is defined here as a computer program that uses numerical
methods to obtain an approximate solution to the mathematical model.
Some of these numerical models, and the one presented here is no
exception, have been designe& for use by groundwater hydrologists
and/or geohydrologists who possess only a limited numerical methods
background. Yet, in spite of the best efforts of code writers
to improve numerical methods so as to make the computer codes as
religble, efficient, and automatic as possible, the user of computer
code ig constantly faced with many decisions that are only code

related and have little to do with the physical problem he really
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wants to solve. For example, he must decide on numerical method
(finite differences or finite elements), space discretization (griad
size), time step, iteration parameters (iterative solutions only), etc.
Only with experience are these decisions readily and confidently made

by the model user.

1.2 Sea Water Intrusion Model (SWIM)

This report presents a finite element model named SWIM, an
acronym for Sea Water Intrusion Model. SWIM simulates groundwater flow
in coastal aquifers and under offshore inlands, in which freshwater
and seawater are both present. The vertical integrated flow equa-
tions, sometimes called the hydraulic or Dupuit equations, are used to
represent reglonal, essentially horizontal two-dimensional {2-D) flow.
The aquifer can be homogeneous or non-homogeneous, isotropic or aniso-
tropic, leaky or non-leaky, confined or phreatic, Time varying or
constant boundary conditions as well as steady state or transient
solutions are also accounted for in the code.

In most practical situvations the transition zone between seawater
and freshwater, where mixing and dispersion phenomenaz occur, is quite
narrow when compared with the overall saturated thickness of the
aquifer formation. In these cases an Iimmiscible interface between
seawater and freshwater is an appropriate and very convenient approxi-
mation (see, e.g., Chapter 2 and Chapter 5; Bear, 1970, 1972, 1979;
Shamir and Dagan, 1971; Pinder and Page, 1976). This approximation

leads to the definition of two types of freshwater aquifers: Ilens
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when the freshwater layer "floats" on top of the seawater layer; foe,
when the immiscible interface intersects the bottom of the aquifer, de-
fining a seawater wedge "toe'. BSWIM, which utilizes the immiscible
interface assumption, can simulate both types of aquifers. When a toe
exists, a fixed mesh algorithm was developed to accurately and econom-
ically track the toe movement, especially when compared to traditional

mesh regeneration models.

1.3 Scope

Chapter 2 reviews the state of the art of analytical and numerical
seawater intrusion models. A classification of the differenttypes of
models is outlined. A review of research performed in related physical
problems (e.g., petrecleum reservoir simulation and the Stefan problem)
is also presented. The chapter ends with the discussion of the
approach selected for SWIM.

The numerical model is formulated and discussed in Chapter 3. A
review of the hydraulic approach governing equations, based on a deri-
vation that is presented in Appendix A, and its boundary conditions is
given. Then the Galerkin finite element method is applied. A descrip-
tion of iterative techniques for handling equation non-linearities and
the time integration technique follows.

Chapter 4 presents a brief discussion of different methods to
track the toe, which is a moving "front" or "boundary". There is a
detailed description of the proposed toe tracking algorithm selected

for SWIM. A study of the sensitivity of this technique to different
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factors, such as space and time discretization, is also presented.
For this sensitivity analysis the 1-D porous media gravitational
segregation problem was used.

To verify the applicability of SWIM to different types of situa-
tions involving two fluilds, several hypothetical test cases were
examined and are presented in Chapter 5. These include, besides the
gravitational segregation problem mentiomed above, classical 1-D
Dupuit type seawater intrusion in aquifers, development of a lens of
freshwater over seawater, intrusion in a leaky coastal aquifer, radial
injection of freshwater in a saline aquifer, and seawater intrusion
toward a coastal pumping well.

Finally Chapter 6 presents a summary, conclusions, and direc-

tions for future research.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Some of the more significant contributions to the theoretical
analysis of seawater intrusion are briefly reviewed in this chapter,
A classification of the different approaches is presented. Contribu-
tions to the literature are summarized according to this classifica-
tion in two tables, one for analytical models and the other for
numerical models,

Other physical situations that can be related in some way to
seawater intrusion in aquifers, such as the petroleum reservoir and
Stefan type problems, are presented in the middle part of the chapter.
These problems are related either through the physics of the problem,
the method of solution, or both. The door remains open for future
work to adapt the methodology presented in this report, and possibly
even the SWIM code, to solve some of these related problems,

The chapter ends with a statement and discussion of the approach
selected for SWIM, the Sea Water Intrusion Model developed in this

report,

2.2 Seawater Intrusion Problems

2.2.1 C(Classification of the Models

In the literature there is no explicit systematization of the
different approaches used to solve the problem of seawater intrusion.

For a better definition and understanding of the capabilities of the
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present model, SWIM, a classification of the previous work is neces-
sary. The classification groups are briefly presented in Table 2.1,
and the criteria used in the specification of the various categories
are explained below.

The term methodology characterizes the "tools" used. Physical
models of seawater intrusion are usually of the Hele-Shaw type (see
e.g., Bear and Dagan, 1963, 1964a; Collins, Gelhar and Wilson, 1972;
Collins and Gelhar, 1971; Mualem and Bear, 1974) and are only mention-
ed here for the sake of completeness. No further attempt to explore
classification os this type of model is presented here. Analytical
models and numerical models use differential equations to represent a
given situation. The difference between them is the method used to
solve these equations., Using several simplified assumptions, most
analytical models lead to an exact closed form solution of the govern-
ing differential equations. However, this is not always possible.
Among the more common simplifying assumptions are: simple geometry,
homogeneity and isotropy of aguifer properties, steady state condi-
tions, and linearization of the equations or boundary conditions.
Solutions to analytical models usually require only pencil, paper and
tables of common functions, Sometimes numerical integration is nec-
essary, utilizing the services of a computer, but the numerical burden
is slight.

Numerical models discretize the continuous time and space domain
of the governing equations, resulting in a seriles of simultaneous

algebraic equations which are usually solved by Gauss eliminatiom or
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iteration. Although some simplification of the physical system is
required, numerical models can generally be applied to a wide range
of situations involving complicated geometry, heterogeneity, aniso-
tropy, and steady or transient flow. Their use requires computer
facilities, and for most applied problems, the prior development and
documentation of a computer code.

Comparing the two methods, it is clear that analytical models
provide an extremely useful first order approximation of a field prob-
lem, as well as the means to verify more versatile numerical models.
Yet it 1s just as clear that most analysis in the future will rest
on the use of numerical codes., The remaining part of the classifica-
tion presented in Table 2.1 is applicable only to analytical and
numerical models.

The term type of model concerns the way the transition zone be-
tween freshwater and seawater is treated. 1In reality, freshwater and
seawater are two miscible fluids, with a transition zone between them.
In this zone dispersive mixing occurs between the two fluids. Often
this transition zone is very thin, compared with the aquifer thickness.
When this occurs, an abrupt or immiscible interface between freshwater
and seawater usually is assumed (Bear, 1972, 1979). Different equations
are solved for different "types of models". A fully mixed model re-
quires the coupling of two equations: the flow equation and the mass
transport (or convective-dispersion) equation. A sharp interface model
requires the solution of two flow equations: one for freshwater, the

other for seawater. 1In some cases this last equation is dropped because
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Table 2.1

Classification of Models of Seawater Intrusion in Aquifers

: PRYSICAL
METHODOLOGY ANALYTICAL
NUMERICAL

FULLY MIXED

TYPE OF MODEL STATIC (Ghyben-Herzberg app.)

SEAWATER
DYNAMIC

SHARP INTERFACE

GEOMETRY LENS
TOE

{¢(x.2)
HYDRODYNAMIC
d(x,¥,2)
FIELD EQUATION
HYDRAULIC ¢{x)
o(x,y)

TRANSIENT

TEMPORAL SOLUTION
STEADY STATE

¢ — piezometric head;
¢ — depth averaged piezometric head;
X,¥,Z — Cartesian coordinates (z vertical).
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the seawater phase is assumed to be static, This is called the
Ghyben-Herzberg approximation. When the seawater flow is accounted
for, the model is designated as a dynamic seawater model, Another
parallel classification for a sharp interface model concerns the
capability of the model to analyze the intersection of the interface
with the bottom of the aquifer. If the interface does not intersect
the bottom of the aquifer, the freshwater body floats on top of the
seawater and has the shape of an optical lens. If the interface inter-
sects the bottom of the aquifer, at a point usually calied the toe of
the interface (see Figure 2.1), then the seawater zone is of limited
lateral extent. A sharp interface model that can only simulate lens
type situatlons is designated here by the term lens model; if it can
handle situations in which a toe exists it 1s called a toe model.
The field equation deseribes the way vertical flow is handled.

If vertical flow and the vertical coordinate, z, 1s retained in the
equation of flow, then it is designated as a hydrodynamic model; 1if
the equation of flow is vertically averaged, it is designated as a
hydraulic model. The hydrodynamic equation can have up to three
spatial variables, (x,y,z), although almost all hydrodynamic models of
seawater intrusion involve only two spatial variables: the vertical
direction z, plus one horizontal direction, x. The hydraulic equation
can have up tc two spatial variables, (x,y), but both must be in the
horizontal plane. The hydraulic approach is synonymous with the desig-
nations "essentially horizontal flow" and/or "Dupuit approximation"

(see, e.g., Bear, 1979).
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The term temporal solution concerns whether the model solves
steady state and/or transient problems. If transient, the additiomal
variable is time t.

Some of the more significant contributions found in the seawater
intrusion literature are classified according to Table 2.1, The
resulting classifications, one for analytical models and the other for
numerical models, are presented as Tables at the beginning of the

following two sections.

2.2.2 Analytical Models

The first studies repor;ed in the literature describing seawater
intrusion in aquifers are those of Drabbe and Ghyben in 188% and
Herzberg in 1901. Both papers focussed on the nothern coastal areas
of Europe. They examined the analytical steady state balance between
freshwater and seawater assuming that:

1- freshwater and seawater are separated by an abrupt or sharp

interface,

2- seawater is in static equilibrium,.

This last assumption igs commonly known in the groundwater literature
as the Ghyben-Herzberg approximation. ©Later, Hulbert (1940) used
these two assumptions to conclude that the interface depth (r) below

the mean sea level (MSL) is given by:

i
X £
C = S £ ¢ (2-1)
Y -y
in which:

Y freshwater specific weight,
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YS seawater specific weight,

¢f freshwater piezometric head.

Eq. 2.1 is often called the Ghyben-Herzberg equation.

The new era of the study of seawater intrusion in aquifers began
with the work of Glover (1959), Henry (1964a,b), and Bear and Dagan
(1964a). These and later contributions are classified in Table 2.Z.

Glover (1959); Henry (1964a), Bear and Dagan (1964a) Rumer and
Shiau (1968), Verruijt (1968) and Van der Veer (1977), accounting for
vertical flow and using conformal mapping and/or hodograph techniques,
calculated several solutions for the steady state position of a sharp
interface in coastal aquifers, subject to different boundary condi-
tions. These studies examined a vertical cross section, ¢(x,z), of
a homogeneous and isotropilc aquifer. Glover (1959), Rumer and Shiau
(1968), and Van der Veer (1977) looked at infinitely deep aquifers, so
they are classified here as lens models, Although Bear and Dagan
(1964a) also looked at a lens model, they and Henry (1964a) examined
seawater intrusion in a finite depth confined aquifers, a foe situa-
tion. Rumer and Shiau (1968) included the effects of anisotropy and
layered non-homogeneity, Rumer and Harleman (1963) performed labora-
tory experiments using a sand box physical model that confirmed this
theoretical work. Henry (1964b) also solved the steady state problem
of seawater intrusion in a confined aquifer, considering vertical flow

and dispersion, His work is the only analytical study of seawater
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Table 2.2

Classification of Analytical Models

INDEPENDENT METHOD OF
TYPE OF MODEL AUTHOR VARTABLES TYPE OF AQUIFER SOLUTION FIELD EQUATION
FULLY MIXED Henry (1964 b) ¢f{x.z);c(x.z) confined Fourler/Galerkin ]hydrodynamic
Ginver (1959) ¢f(x.zJ confined conformal mapping| hydrodynamic ssw
Va1 der Veer {1977) ¢f(x.z} phreatic potential flow |hydrodynamic ssw
LENS
i 1
Rumer+Shiaw (1968) cpf(x,z) gg"{:;g:egn sotropic] conformal tnappinthydrodynamic S5W
Ha1tush (1968) $f(x.y,t) phreatic approximated PDE phydraulic SSW
Heary (1964 a) ef(x.z) gonfined/phreatic conformal mapping|hydrodynamic ssw
Bear+Dagan {1964 a)' ¢f(x.z) confined hodograph method |hydrodynamic ssw
SHARP £ -
Bear+Dagan {1984 b) |3 (x.t};c{x,t}| confined approximated PDE {hydraulic dsw
INTERFACE
Collins+Gelhar(1971) | 37 (x) leaky confined approximated POE |hydraulic  ssw
TOE MuilemtBear (1974) $f(x) multi-layered leaky | approximated PDE [hydraulic S5W
Yerou (1978) f
Hashish et al.{1979) Fix) Teaky confined approximated PDE |hydraulic S5W
Strack (1976) if{x.y} conflied/phreatic potential flow hydraulic SSW
Kishi+Fukuo (1977) 3‘(!‘.0) confined approximated POE |hydraulic SSW
Kashef (1975,1976) Ef(x,y,t} confined superposition hydraulic SSW

Kashef+smith {1975}

 — concentration of salt ;
¢f — freshwater piezometric head ;

t — interface depth ;
x,¥,2 — Cartasian coordinates [ z vertical ) ;

§ — depth averaged freshwater piezometric head ;

r.& — cylindrical coordinates ;

t— time 3

PDE — partial differential equation ;
ssw — static seawater (Ghyben-Herzberg approximation};

dsw — dynamic seawater,
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intrusion examining the effect of mixiﬁg on the location and extent
of the transiiton zone.

Bear and Dagan (1964b)} analvytically applied the hydraulic
approach, and experimentally used a Hele-Shaw model, to study a con-
fined aquifer with a sharp interface. The interface moved due to
changes of incoming freshwater flow. They found two expressions for
the Interface, one for an advancing wedge and the other for a retreat-
ing wedge. Other basic applications of the sharp interface/hydraulic
approach are given in Rumer and Harleman (1963) and Fetter (1972), as
well as the reviews by Bear (1970, 1972 and 1979).

Using the hydraulic approach and the Ghyben-Herzberg sharp inter-
face approximation, Hantush (1968) established and solved analytically
differential equations that approximate different situations of the
unsteady movement of a freshwater lens in infinitely deep, homogeneous
and isotropic phreatic aquifers. By assuming an Infinitely deep |
aquifer Hantush avoids the problem of the intersection of the interface
with the bottom, that 1s the freshwater boedy floats as a lens over the
seawaters This also permits the use of the Ghyben-Herzberg approxi-
mation.

Other authors have examined the steady state shape and position of
the interface in leaky aquifers, using the sharp interface/hydraulic
approach. Collins and Gelhar (1971) analyzed seawater intrusion in a
leaky aquifer by solving the governing equations amalytically inland
of the seawater wedge and by numerical integration over the wedge.

Mualem and Bear (1974) looked at steady state flow in an aquifer where
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a thin semipervicus zone divides the aquifer'into two layers. Since
they used the Dupuit approximation, they allowed only vertical flow in
the semipervious zone. Verou (1978) and Hashish et al. (1979) consid-
ered a leaky layer at the top of the aquifer and studied the steady
state position of the interface for several types of leakage and inland
boundary conditions.

Several other authors, also using the sharp interface/hydraulic
approach, have examined the effects of pumping and/or recharge wells
on coastal seawater intrusion in finite depth aquifers. Strack (1976)
found the steady state solution for.confined and phreatic aquifers,
using (Girinskii) potential flow theory. Kishi and Fukuo (1977) looked
at steady flow in confined aquifers, by linearizing the freshwater
equations above the interface and using Green's Functions. Kashef
(1975, 1976) and Kashef and Smith (1975) used the Chyben-Herzberg
approximation and the principle of superposition to estimate the trans-
lent effect of recharge wells on piezometric head and interface posi-
tion in a confined aquifer.

With the exception of Henry (1964b) all these analytical models
take a sharp interface approach. Among these only one, Bear and Dagan
(1964b), considered dynamics of the sea water. However, almost all of
these models are based on simple assumptions about geometry (infinitely
deep or of constant thickness), properties (homogeneous and isotropic),
and boundary conditions. If these assumptions were not made 1t would
be difficult, if not impossible, to solve the governing equations

analytically. Since in practical problems the aquifer geometry and
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parameters vary in space, and natural recharge and pumping vary in

both time and space, numerical models are required.

2.2.3 Numerical Models

With the advent of high speed digital computers, numerical models
have become an attractive solution method for problems that are too
complicated to solve analytically. Table 2.3 presents the variocus
seawater intrusion numerical models found in the literature, classi-
fied according to the systematization of Table 2.1, The discussion of
these models in the following sections is presented separately for

fully mixed models and sharp interface models.

2,2,3.1 Fully Mixed Models

Pinder and Cooper (1970) studjed the movement of the transition
zone in coastal aquifers by analyzing a vertical cross section of the
aquifer using flow and mass transport equations. The structure of
these two differential equations is different. The flow equation is
a parabolic equation which 18 accurately approximated by finite
difference or finite element methods. The mass trangport equation
has hyperbolic ﬂﬂg parabolic terms. Approximation of the hyperbolic
advective terms by these methods is usually not very satisfactory,
unless the advective terms are less lmportant than the dispersive
ones (see Pinder and Gray, 1977). Examining a vertical cross-
sectional view of a homogeneous, isotropic confined coastal aquifer,
Pinder and Cooper (1970) solved the steady state flow problem using a

finite difference scheme with an iterative alternating directions pro-
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Table 2.3

Classification of Numerical Models

TYPE OF EQUATION

METHOD

TYPE OF MODEL AUTHOR SPACE ass OF FLON
VARJABLES FLOW TRANSPORT SOLUTICH EQUATION
Pinder+Cooper (1970} %,z steady* transient FO/MC** hydrodynamic
LeetCheng (1974} XaZ steady* steady FE hydrodynamic
FULLY MIXED Segol et al. (1975) %2 steady* transient FE hydrodynamic
Desai+Contractor (1977) %, ¥ steady* transient FE hydrodynamic
INTERCOMP (1976) Xa¥.2 steady* transient FD hydrodynamic

FRESHWATER | SEAWATER
FLOW FLOW

Kono (1974) Xy2 steady static FE hydrodynamic
LiutLiggett (1978) %z steady static BIEM hydrodynamic
Cheng+Hu (1975) %,2 steady steady FE hydrodynamic

Fetter {1972) x,¥ steady static Ot hydraulic

LENS
BURGEAP (France) ¥ transient | static FO hydraulic
SHARP

INTERFACE Rofail {1977) XY transient | transfent Fo hydraulic

W.R.C. {England) %, ¥ transient | transient FD hydraulic

Pinder+Page (1975) XY transient | transient FE hydraulic

TOE Shamir+Dagan (1971) X transient | transient FD hydraulic

LENS/TOE {Present Mode! — SWIM N, ¥ transient | transient FE hydraulic

A,¥,7 — lartesiar coordinates { z vertical);

FD ~ finite differences ;
FE — finite elements .

* — [Does not accownt for time varying bowndary conditioms, only accounts for time varying flow due to
changes in the density of the fluid.

**t — FD for fiow and dispersion and MC for advection,
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cedure, and the transient solute transport problem by the method of
characteristics for advection and finite differences for dispersion.

In the present work (SWIM) transient flow is considered when the
time derivative 1s present in the governing equation. Pinder and
Cooper (1970) have consldered variations in time in the flow equations
due only to variations in the density of the fluid at a particular
position in space. All of the fully mixed models mentioned below
use the same approach. For this reason the flow equation in these
models will be considered a "steady state" equation in this review.

Lee and Cheng (1974) solved the steady state versiom of this
problem using the finite element method with linear triangular elements
and a Raleigh-Ritz procedure., Segol et al. (1975) analyzed the general
problem posed by Pinder and Cooper (1970) using the Galerkin formula-
tion and quadrilateral elements, with linear or quadratic sides. Time
integration was handled with an iterative implicit finite difference‘
scheme. This model was applied to the Biscayne aquifer, Florida
(Segol and Pinder, 1976). Desal and Contractor {1977) present a
similar finite element model for coastal aquifers.

Intercomp (1976) developed a 3-~D finite difference transient
model for the U.S. Geologlcal Survey, to evaluate the effects of
liquid waste disposal in aquifers. This model has also been used to
examine seawater intrusion in aquifers. However, the results pre-
sented in their report are quite discouraging due to the solution's

slow convergence and lengthy computations.
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2.2.2,2 Sharp Interface Models

Kono (1974) used the finite element method, with a variational
formulation and linear triangular elements, to solve the steady state
flow for freshwater above a sharp interface considering the effects
of vertical flow. He also examined the problem of interface upconing
under a pumping well in the zone above the intruding wedge. Liu and
Liggett (1978) used the boundary integral equation method to study the
interface in an infinitely deep confined aquifer, again considering
the effects of vertical flow. Both Kone (1974) and Liu and Liggett
(1978) compared their numerical solutions favorably to analytical
solutions of the type presented by Henry (1964a) and Bear and Dagan
(1964a), A related problem was addressed by Cheng and Hu (1975).
They examined the flow of a density stratified 1iquid through an em—
bankment by looking at a vertical cross section. They solved simultan-
eous equations for the freshwater and seawater zones using quadratic
quadrilateral finite elements.

The remaining sharp interface models are based on the hydraulic
approach and all of them, except the last by Shamir and Dagan (1971),
are lens type models.

Fetter (1972) developed a simple 2-D steady state lens model
using finite differences and the Ghyben-Herzberg approximation.
BURGEAF, a private society of consulting engineers in France, has a
2-D flow model of a fraeshwater lens, called TRABISA, based on finite
differences (International Groundwater Information Center, Indianapolis,

Indiana). A good model of steady flow conditions, it uses the Ghyben-
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Herzberg approximation for tansient flow problems. The Water Resources
Center at Medmenham Laboratory in England has a 2-p transient flow
finite difference model of a freshwater lens, that solves both fresh-
water and seawater equations simultaneously (D.B, Oakes, personal
communication, 1977). A similar model has been described in a publica-
tion by Rofail (1977}, although there are some questions about the
mathematical formulation (Sa da Costa and Wilson, 1978). Pinder and
Page (1976) formulated the 2-p transient lens problem in a Galerkin
finite element model using linear triangular elements,

The 1-D transient toe problem was modeled by Shamir and Dagan
(1971) using the sharp interface/hydraulic approach and finite differ-
ence techniques. Particular attention was given to the toe of the
interface, which was represented by a moving node; that is, a new
finite difference mesh was generated at each time step. This code

and some of its results are described in Chapter 5 of this report,

Some summary remarks can be made about the existing numerical
models. The fully mixed models all use a hydrodynamic flow equation
and a steady state flow solution not allowing for time varying boundary
conditions (which are very common 1in groundwater problems). All but one
of the sharp interface models apply to lens type situations. Most of
the sharp interface models use the hydraulic approach and allow trans-
ient flow conditions.

It is evident from Table 2.3 that there is no existing general 2-D
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sharp interface/hydraulic numerical code to solve the toe problem
for steady or transient conditions. Furthermore, most of the models
listed in the table are unavailable or poorly documented. The Sea

Water Intrusion Model SWIM has been designed to fill these gaps.

2.3 Related Physical Problems

This section presents a brief discussion of two phase problems
which are related to the sharp interface approach to seawater intru-
slon. Thege problems can be divided into two categories: porous medla
problems, such as free surface and petroleum reservoir problems; and
other problems, such as Stefan problems. In the next two sections some

of these problems are presented following these two categories.

2.3.1 Two Phase Flow and Reservoir Problems

Two phase flow problems involve two liquids, or a liquid and a
gas. The reservoir problem encountered in petroleum engineering is a
typical example of a two phase flow problem. For seawater intrusion
in aquifers one 1s interested in knowing where the interface separating
seawater from freshwater is located. 1In petroleum engineering the
general problem is not to calculate where one fluid ends and where the
other begins, but rather to calculate the amount of each fluid found
throughout the reservoir, that is, the relative saturation of water to
0ll. The petroleum engineer has to predict the ratio of water to oil
production at a given well. To avoid confusion, the following defin-
itions should be compared: 1in seawater intrusion an immiscible, sharp

or abrupt interface is an interface that separates two fluids, fresh-
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water and seawater; in petroleum engineering a "sharp front" is a
steep relative saturation zone that separates two areas with different
water to oil ratios, for example 10Z < and > 10%. A reservoir "sharp
front" is equivalent to a very steep seawater-freshwater interface. A
seawater inirusion problem can have a toe and the seawater phase can
disappear inland of that point; a petroleum reservoir does not have a
toe, and both phases coexist everywhere. In an oil reservoir the dis-
placement of the relative saturation front is calculated in the same
way as the freshwater/seawater interface for a lens situation. The
relative racio of freshwater to seawater saturated thickness, say

bf/bs

, is analogous to the relative water to oil saturation, sw/so.
The petroleum engineering literature contains many contributions
to the field of resevoir simulation. Only a few of them will be
mentioned here. Peaceman (1977) and Crichlow (1977) review the use
of finite difference methods for reservoir simulation. Since both
books contain extensive bibliographies no further review of finite
difference reservoir models will be given here. The remaining litera-
ture concerns the finite element methods.

The finite element method was first introduced to petroleum
reservoir simulation by Price et al. (1968). It has since become a
very powerful tool used to model saturation front displacements,
McMichael and Thomas (1973) employed Galerkin's method to examine three-
phase multidimensional (oil-water-gas) compressible flow problems.

Solving the resulting system of equations by LSOR, they found that for

the same size time step, the CPU time required with this method was
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larger than that incurred with finite difference. However, with the
finite element methods they also could use larger time steps and did
not need to resort to "unnatural artifices to assume a stable, con-
vergent solution". Mercer and Faust (1976) give a good review of the
finite element reservoir simulation literature for later work, includ-
ing the use of various "tricks" such as upstream weighting to improve
predictions of sharp front displacements. Other related work is re-
ported by Dalen (1976), Spivak et al. (1977) and Lewis et al, (1978).
The major emphasis of this work--the sharp front problem--is of little
relevance to seawater intrusion becasue there are no steep immiscible
interfaces. The other focus of these papers is the time integration
scheme, and this is of interest. Most of these reservoir schemes use
finite differences in time, and a Newton-Raphson or Modified Newton-
Raphson iterative technique to handle equation non-linearities (see
Mercer and Faust, 1976).

Lefebvre du Prey and Weill (1974) treat the oil displacement prob—
lem using a moving grid. They allow nodal displacement only in the
vertical direction for a linear triangular finite element grid. Three
zones are described: water saturated, oil saturated, and water + oil
between. The two moving boundaries between the three zomes are modeléd
by moving the grid. The moving boundaries are like the toe of an inter-
face--they describe the limit or extent of one of the two phases., It
is quite possible that this model could be used to simulate some of the
same 2-D toe situations for which SWIM has been designed. It is also
obvious that this is an entirely different approach to peservoir mQdeling

form that described above.
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2.3.2 Stefan Problems

The Stz2fan problem, or unsteady heat flow with change of phase,
usually involves solid and liquid states with an interface
between them. This problem can be found in several industrial applica-
tions such as: freezing of food, production or melting of ice, solid-
ification of castings, ablation of missile skins, welding of two materi-
als, and the glass industry. It even occurs when considering the
evolution of a star. In these cases the term "interface'" is analogous
to the term "toe" in seawater intrusion. In numerical simulations
a moving grid based on the interface (our "toe") is often used to account
for the discontinuity of properties (see Crank, 1975, and Fisher and
Medland, 1974), Fisher and Medland (1974) present 2-D finite element
moving grid solutions, while Crank (1975) demonstrates some principles
of moving finite difference grid solutions. Fisher and Medland also
examine a 2-D finite element solution for a fixed grid with a specialr
weighting procedure to account for the interface ("toe") movements.
Wellford and Ayer (1977) solved the 1-D Stefan problem with a fixed
grid, using special elements with a discontinuous interpolation func-
tions, in the zone crossed by the interface ("toe"). Kushner and
Walston (1978) used a 2-D fixed linear triangular finite element grid
with a special cubic integration formula to evaluate the properties

inside those elements containing the interface,

The Stefan problem is very similar to the immiscible interface/

hydraulic approach seawater intrusion problem Involving a fce. The
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toe defines a boundary between the single phése water zone and the two
phase freshwater above seawater zone. In transient problems the toe
moves; that is, it becomes g moving boundary between the two phases,
Just as the interface in the Stefan problem becomes a moving boundary.
The finite difference or finite element mesh can be regenerated to
follow this moving boundary, as is usually done, or special algorithms

can be adopted to a fixed grid to indirectly account for it.

2.4 Methodology Selected for SWIM

The review presented in Section 2.2 demonstrates that a gap exists
in the state-of-the-art of numerical models of seawater intrusion in
aquifers. That is, there is no existing 2-D sharp Interface/hydraulic
approach numerical code to solve the toe problem for steady or transi-
ent conditions. SWIM has been designed to fill this gap, furthermore
it also simulates lens type freshwater situations.

SWIM uses the finite element method. Preferred over finite differ-
ences, finite elements better represent geometric boundaries, allow a
more flexible spatial discretization, permit a better handling of non-
homogeneities and anisotropies, and reduce storage requirements for
data sets due to the smaller number of node points required, Besides,
as discussed below, SWIM uses a toe tracking algorithm based on a fixed
mesh and the Gauss quadrature points which are necessary for performing
spatial finite element integration over the elements. Mixed isoparam-
etric elements with 4 to 8 nodes are employed for space discretization
to provide an optimal level of discretization flexibility, with 4-node
linear elements ir locations with small gradients and higher order ele-

ments elsewhere.
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The governing equations are integrated in time using an implicit
finite difference scheme. This scheme has no restriction on the time
step size. Equation non-linearities, due to water table or interface
movements, are handled by a modified Newton-Raphson technique similar
to the schemes employed in petroleum reservoir problems (see Section
2.3), and in other non-linear continuvum mechanics flelds (see, e.g.,
Desai and Abel, 1972; Zjienkiewicz, 1977; Bathe, 1979).

To track the toe movement, accurately with a fixed finite element
mesh, a special algorithm was developed. This algorithm uses a non-
linear description of hydraulic properties inside those elements con-
taining a toe, and the Gauss quadrature peoints to indirectly track
the toe, I: is more sophisticated than somewhat similar ideas des-
cribed by Wellford and Ayer (1977) for the 1-D Stefan problem, or just
a few months ago by Kushner and Walston (1978) for the 2-D Stefan prob-
lem. Bathe and Khoshgoftaar (1979) used a closely related technique
to model free surface seepage problems without mesh regeneration.

In summary, SWIM is a Galerkin finite element model using mixed
isoparametric elements to meodel seawater intrusion in aquifers. It is
based on a sharp interface/hydrauliec approach. Both lens and toe
situations are modeled, with separate flow equations for freshwater
and seawater., The toe movement is indirectly tracked from a fixed
mesh by a special algorithm that employs the Gauss quadrature points.
An implicit finite difference time integration scheme is used; équation
non-linearities are handled by a modified Newton Raphson methed. The

following chapters describe SWIM in detail.
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Chapter 3

MODEL FORMULATION

3.1 Introduction

The general procedure used in this work to solve the problem of
seawater intrusion in coastal aquifers is discussed in this chapter.
First the governing differential equation and the principal assumptions
behind its derivation are introduced. Next the boundary conditions
required for solution of the governing equations are discussed. The
section that follows presents the derivation of the Galerkin statement
for the space integration of the governing equations, and the finite
element discretization. Finally, the last part of the chapter deals
with the time integration and iterative techniques used to solve the

resulting matrix differential equatien.

3.2 Governing Equation

The exact mathematical statement for a moving interface be-
tween two immiscible liquids is presented in Bear (p. 524-526, 1972).
Except for extremely simple problems these equations have no analytical
solution and, therefore, require numerical solution.

The derivation of the governing equations used in SWIM is pre-
sented in Appendix A. In tensor notation, these differential equations

are:
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where a number of the terms are illustrated in Figure 3.1. The
interface depth, ¢, is defined by the continuity in pressure at both
sldes of the interface. 1In terms of plezometric heads, this leads to

the expression:
t= 5 & -5 b | (3.3)

£
In these equations the superscripts = and s represent a freshwater

and seawater quantity, respectively, and:
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X, ,x, - gpace coordinates 1,j = 1,2 L]

i7]
Kxixj ~ components of the permeability tensor [L/T]
b - saturated thickness [L], (see Fig. 3.1)
¢ - piezometric head {L] |

K; - vertical permeability in the semi-pervious leaky layer
{ = 0 if nonexistent), m = 1 top layer, m = 2 bottom

layer [L/T]

b’ thickness of the leaky layer, m = 1,2 [L]
¢$ - plezometric head in a vertically adjacent aquifer, on the

other side of the leaky layer, m = 1,2 [L]

q - source/sink term [L/T]

N -~ natural accretion ( = 0 in confined aquifers) [L/T]

§ - elastic storativity (confined aquifer) or specific yield
{(phreatic aquifer) Iv]

n = effective porosity [-]

Y - specific weight; AY=YS-Yf {H/LZ/T]

t - time [T]

The major assumptions behind the derivation of these equations
are (see Appendix A):

- dmmisicble interface separating the fresh and seawater phases,

- Darcy's law is applicable,

- vertical variations of storativity, porosity, and horizomtal

permeability are neglected,
- Dupuit assumption is valid for phreatic aquifers, and essen-

tially horizontal flow in confined aquifers,
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- vertical flow is only considered for leaky effects and for

- constant specific weight for both fresh and seawater.

accretion,

and they completely fill all voids in the saturated zone

These two phases are considered homogeneous, isotropic,

of the porous media.

Appendix A also presents the derivation of a matrix algebraic

equation, representing Eq. 3.1 and 3.2 in an abbreviated form:

where a matrix quantity is represented by _ and a vector by _.

The state vector containing the plezometric head in both freshwater

and seawater is:

[[1=2
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CE B I S G 0 0
1*1 1%2 (3.7)
KL bf Ki bt 0 0
21 2%2
0 0 K> K: N b®
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Kl — m m
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£
1
N
g = m=1,2 (3.9)
B
b |
qf + N
Q = (3.10)
8
q
£ f 8 -
S +n{-— —n-}-—-
s = v Y (3.10)
Nl 6 1
-n Ay S -|-t'1AY
A superscript represents a transpose quantity. The matrix

B 1s a derivative operator, operating on all terms to 1its right en-

closed within the same parentheses.
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3.3 Boundary Conditions

The governing differential equations, Eq. 3.1 and 3.2, are applied
to a finite aquifer domian. This domain is defined by an extermal
boundary Sy which is usually broken into three segments, representing
three boundary types.

(3.12)

For some particular problems one or more of these individual seg-
ments may not exist. The three types of boundary conditions are:
specified piezometric head along boundary segment 8,5 also known as a
first type, Dirichelet, essential or geometric boundary condition;
specified flux along boundary segment Sy equivalent to a specifica-
tion of the first space derivative of piezometric head, also known as
a second type, Neumann, natural or force boundary condition; and

a mized boundary condition along boundary segment s., that is de-

3°
fined by specifying a head in an adjacent aquifer or surface water
body, which causes a flow through a semipervious layer in or out of
the main aquifer; this is also known as third type or Cauchy boundary
condition. The formulation used in this model incorporates this
third type boundary condition in the leakage terms of the governing
equations.

In a coastal aquifer the sea boundary requires special treatment.
In this work the sea bhoundary condition is treated as a third type
boundary condition. That is,. it is assumed that the freshwater flows

or leaks to the sea through a finite thickness opening along the coast-

iine (see Fig. 3.2). Since the freshwater piezometric level at the
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sea is zero, all of the remaining freshwater’head is lost in this
process, which primarily represents vertical flow. The freshwater
flow per unit length of coastline toward the sea (out of the aquifer)
under these assumptions is:

K'f

c £, . £ 2
Qf:--—];-ém(q»;—cb)b [1°/1)
where the subscript o Stands for coastal boundary.

At the coastal boundary the freshwater head is zero, ¢é = 0,

and this equation becomes:

of = = byl - K of  1L¥/m (3.13)

The problem now consists in determining the value of Ké, a functilon
of parameters Kéfand bé, and temporal variable bf, the opening to

o £ bf/b').
C C

the sea (Ké = K
Bear and Dagan (1964a) developed an exact solution for steady
state freshwater flow to the sea for a confined aquifer, accounting

for vertical flow, i.e., without taking the Dupuit approximation.

They found

£ Ay  f
Q = K=Ibp (3.14)
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Substituting Eq. 3.3 with ¢° = 0 in Eq. 3.14 gives:

of = wef-x& g (3.15)
C ‘Yf

where K is the permeability of the aquifer, and d the depth below
mean sea level of the top of the confining layer as shown in Fig. 3.2,
d = 0 for phreatic aquifers. Ignoring the last term in Eq. 3.15 leads

te an expression similar to Eq, 3.13:

Q = Ké (L?/1]

Therefore, in thils case, Ké = K, and 1s a constant. Subsequent
analysis in this work assumed that K; is constant, and it is often set
equal to K. With this simplified assumption the sea boundary condition
is treated as a linear boundary in the parameter K; rather than as
non-linear, Rumer and Harleman (1963) and Pinder and Page (1976) used
similar assumptions to obtain an opening to the sea.

Some authors also regard the initial conditions as a boundary
condition. They treat these conditions as a first type boundary
condition in time. 1In steady state problems Initial conditions are
usually not necessary, but due to the nonlinearities of the problem
under discussion, an initial guess is required, This initial guess
is called an "initial condition" hereafter, and involves the know-
ledge of an initial position.or guess of the interface and the corre-

sponding freshwater piezometric head,
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3.4 Galerkin Approximation of the Governing Equations

Putting all the known quantities on the right hand side, the

governing equation, Eq. 3.4, can be written as:

i W0

%)
t
Il
I3
[ --]
L= ]

@
L=
[}

or in a simplified way as

where L{ } is an operator

The continuous state

where

and

L(®#) = q

L]
§_ =
n
of = 3t ]
i=1
8 . 18 _ E
I
i=]1

-
(-

e Fh
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(3.16)

(3.17)

and g represents the independent variables.

vector ¢ is approximated by a trial function

(3.18)

(3.19)

(3.20)

(3.21)



The matrix, E = Hﬁxl,xz) is called an interpolation or shape function,

and is a function of space but not time. Its definition 1is:

[[jr=
]

(3.22)

The vector X = X(t) represents the values of the plezometric heads
for both freshwater and seawater phases at n discrete poiats called
node points; they are only a function of time. X is a symbolic
repregentation of the vectors of piezometric head, QF and Q?:

X = 8 (3.23)

. -

where ¢i and ¢i are freshwater and seawater head, respectively, at node
point i, The particular cemstruction of X, with alternating values of
freshwater and seawater plezometric heads, and the corresponding
construction of E, is due to the fact that they minimize the bandwidth
of the matrices involved. Given the definition of H and X, the

following rules for derivatives hold:
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(3.24)

(3.25)

Introducing the trial function‘§ In Eq, 3.17 in place of state

vector ¢ results in a small error e¢:

e=L(® -g#0 (3.26)

The weighted residuals approach seeks to determine the nodal values

of plezometric heads, X, by setting a weighted integral of Eq. 3.26

over the entire domain area, A, equal to zero. That 1is:

JWiELdA = I wi[L(é) -q] dA =0 i=1,2,...,n
A A

(3.27)

where w; are arbitrary weighting functions and Q i{s the two-dimen-
sional null vector.

In order to use a matrix notation let us intro-
duce the matrix W

(3.28)
1 w2 P w

so that Eq. 3.27 can be rewritten as:
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I T ear = IETLL(é) -qlda=0 (3.29)
A

Substituting Eq. 3.16 and 3.18 in Eq. 3.29 leads to:

[«

Wlsh E_g-k H(@ -X-BTE HX | dA=0 (3.30)
- = = t =T = =N - = = = = )
A

[

m=1,2

where

£
¢ T
X' 13
1

£
¢
'8
2

.
¢n

¢!°

N --Mm

This equation has a term with second order derivatives, that can be

reduced in order by using Green's theorem. Looking only at this term:

[Fardfioa - [Ferifapa
A 8, | (3.31)
- " wla s Ep a

A
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where S, is the exterior geometric boundary,

g=fa, 2 0 0 (3.32)

and Exj, j = 1,2, are the unit normal components in the xj direction.

If the weighting functions w, are restricted to those which wvanish
along the first type boundary condition segments, 8> then
the limit of integration on the first integral on the right-hand side of
Eq. 3.31 can be changed to 8, by uging Eq. 3.12 and because 59 = 0,
since the third type boundary conditions are incorporated in the equa-
tion. This integral represents the second type boundary conditionk,
the flow across the boundary segment 8, Using Eqs. 3.6 through 3.11
and Eq. 3.30, and a similar procedure to that outlined in Appendix A

(Section A.3) gives

- f-‘ r -
* *
2T ax= 218 g= (o Kl bt fgth g
1 5%
(3.33)
2 8 8398 __q*s
Xs xixj ij
. — - -

where the superscript * represents a specified quantity, in this case
% *

gpecified fluxes, q £ and q s’ for both freshwater and seawater

respectively. The flow is positive intec the aquifer. Substituting

Eq. 3.33 in Eq. 3.31, changes the latter to

=

[ @ rema - e aparwa oW
A 8 A
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Applying this result to Eq. 3.30 leads to

= =_e—

dX
T = _ _xt _ T..T T
(¢ e g - a5 vl + ol e s
T *
+ J Wgqgds =20 m=1,2 {3.35)

which is the new form of the governing equations, containing only
first order derivatives and incorporating the second type boundary
conditions. In Galerkin's method, the weighting functions are taken

as the interpolation functions, that is:

=

=B (3.36)

or for node 1, w, = hi' Substituting H for W in Eq. 3;35, the follow-

ing expression is obtailned after rearranging the terms:

{ JAQT‘?; i dA}% -IA HQ dA - {L}_;TEI; dA}Q{:n -X)

T T T T *
- 3.37
+{JA(1=311 (ng)dA}_}g+Iszgsg ds = 0 (3.37)

m=1,2

Es are the interpolation functionms along the boundary segments. Note
that all space derivatives are in terms of derivatives of the inter-

polation functions H. The following simplified netation is useful:

§ = gr_g_ (3.38)

Therefore Eq. 3.37 can be written as:
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*
+” BIEBdA}§+J i g ds = 0 (3.39)
A %2 m=1,2
The analytical evaluation of these integrals is usually impossible
for distorted elements, and a numerical integration is required.
This integration 1s regarded as a part of the isoparametric element

matrix computations. In SWIM Gaussian quadrature is used. I 1s treated

£
as a functional coefficient, see Mercer and Faust (1976), in that b~ and
bs vary over each element.

The following definitions help to simplify Eq. 3.39:

M

c-| HsHada (3.408)
Ja
Q- | o - J B g*ds (3.40b)
‘A 8
2
L -[ E'K' dA  wel,2 (3.40¢)
=m A = =

T- I B'r Baa (3.40d)
A

where C 1s a storage matrix,ggthe total flow vector, Em the third type

*
boundary matrices , and I the conductivity matrix. Writing Eq. 3.39

*The matrices L as described by Eq. 3.40b represent the leakage terms
consistently, 1if they are specified over an element area or along an
element side. However, the leakage can be represented in SWIM in a
lumped fashion by specifying leakage parameters at the nodes.
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using these definitions and transferring to the right-hand side all

known quantities gives:

dX
— - '
¢c—+Tx+L X =Qup x (3.41)
m=1,2
or in a simpler form
dx
Cqr tKX=F (3.42)

where the total conductivity matrix is given by

R=T+1 +L, | (3.43a)

=X

and the force vector by
- L '
F=Q+ X+ LX) (3.43b)

Eq. 3.42, a matrix differential equation, representsz the final form
of the governing equations. Time integration of this equation is dis-
cussed in the following sections.

In the models using the finite element method the matrices defined
in Eqs. 3.40 are evaluated at the element level, that is the limit of
integration is A®, the area of each individual element. The global
matrices are obtained by adding together the element contributions at
each node, from all the elements that share that node. The global
matrices are banded and have a dimensiocn of (2n x 2n), where n is
the total number of nodes used to discretize the domain, The size of

the bandwidth depends on the order in which the nodes are numbered.
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3.5 Finite Element Discretization

A subject of major importance in finite element analysis is the
discretization of the domain, involving decisions about the number,
size and type of elements to use. A balance must be struck between
many small elements, giving good accuracy, and a few large elements,
reducing computational effort. A general feeling of how the aquifer
is going to behave is always helpful, because the element size should
be reduced in areas with large piezometric gradients, and increased
in regions with relatively constant piezometric heads. In numerical
modeling, a judicious discretization of a domain comes with experience,

The most general element used in SWIM is the eight node isoparam-
etric element represented in Fig. 3.3a. This element is shown in terms
of the local coordinates (r,s) in Fig. 3.3b. The interpolation func—

tions, Fig. 3.3¢c , for this element are:

hy =3 () (e) - = - -5 = L (14r) (L+e) (r+e-1)
h, =+ (1-r) (l+s) - Eg- - F-g- = T (1-r) (148) (s-1-1)
by = % (1-1)(i-8) - h—g - f% = & (-1)(1-8) (-s-1-1)
h, = 7 (141) (L-s) - -1?—;— - E—g— =+ (D) (18 (r-s-1)

he =3 (1-r°) (1+s)

(1-5%) (1-1)

o
]
|
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Figure 3.3 - General 8-node Element in a) Global Coordinates; b) Local

Coordinates; <¢) with Associated Interpolation Functions.
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h7 = %-(l—rz)(l—s)

hy =—21- (1-s2) (1+1)

The transformation between the local and global coordinates is

achieved using the Jacobian matrix J : defined as:

-Gx dx ]
= {1 2
i = §r Or (3.44)
ox 8%
§s &g

The general eight-node element can degenerate in other types of
elements having from 4 to 8 nodes, see Fig. 3.4. Triangular elements
are obtailned by collapsing the corner node numbers 1 and 4; thus the
three node triangular element actually uses 4 nodes in SWIM,

The theory of finite elements 1s fully documented in the litera-
ture (Zienkiewicz, 1977; Bathe and Wilson, 1976; Huebner, 1975; Desati
and Abel, 1972), with some having special emphasis on the application

to groundwater (Connor and Brebbia, 1976; Pinder and Gray, 1977).

3.6 Time Integration

The finite difference method is used to evaluate the time deriva-
tive of the matrix differential equation, Eq. 3.42. 1In groundwater

hydrology the more common techniques for approximating this derivative

are.
dx X =X
. oo o At
Explicit: 3E At (3.45)
t
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dx X -X
_ . —tHAt —t :
Implicit: T Y (3.46)
t+AL
Trapezoidal rule or
Crank-Nicholson: .§§ =-§t+At7§t-At (3.47
dt 2At 470
t

The subscripts on these equations refer to the time at which the
subscripted quantities are evaluated.

The explicit method has the advantage of expressing X

Xiat only in

termg of known quantities. Using Eq. 3.45 in Eq. 3.42, this leads to:

(3.48)

1y

LY

Matrix K is subscripted in time because of the non-linearity of the
solution. It must be continually updated during the solution; in this
case, uging the last calculated values of the piezometric heads and
saturated thickness. Matrix C 1s constant in time, unless the aquifer
undergoes a change in status from confined to phreatic or vice-versa*.
In many problems the matrix C can be evaluated in a lumped or diagonal-
ized form. When this is possible the explicit method has an advantage:
it does not require the assembly and reduction of the coefficient
matrices in order to solve for the head. On the other hand, this
method constrains the size of the time step, due to an intrinsic stab-
ility criterion. To determinme the maximum time step exactly requires

the evaluation of the eigenvalues of matrices K and C, which are time

. .
Temporal varlations in the storage part of C are negligible compared
to porosity storage yielded by interface movement,
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and problem dependent. On a similar type of model and assuming opti-
mistic values Shamir and Dagan (1971) found a maximum time step of

the order of 8 days, too small to be practical for most applications
considered. Due to the particular form of the storage matrix en-
countered in the seawater intrusion problem (see matrix §, Eq. 3.11,
and note that it is not a diagonal matrix), a lumped storage matrix c
will not be diagonal, but tri-diagonal. Therefore, the primary advant-
age of the explicit formulation of not requiring the assembly of the
watrices 1s lost, although a tri-diagonal algorithm, say the Thomas
algorithm, could be used. Because of this and the small time step

allowed, the explicit formulation was abandoned.

From the other two options, the implicit method was selected for
the existiang time Integration scheme. Using the implicit scheme

Eq. 3.42 can be written:

X -X
TERE T Lk X =

g At StHALTHHAL ‘Et+At

(3.49)

where € is assumed constant in time. Transferring all known quantities
to the right-hand side the following matrix equation 1s obtained:

C

(A—t+K Y X

C
Kerar! Zevae "2e L HE (3.50)

—t+At

Since this 1s a nonlinear system of equations, the solution is obtained
by iteration. The iterative procedure used is discussed in the next

gection. First, however, note by examining Eqs. 3.40 and 3.43 as well
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as Eqs., 3.6 through 3.9 that all matrices involved in the formation
of matrix K are symmetric matrices of the same order as K, and there-
fore K i8 also a symmetric matrix. However, matrix C is not symmetric,
because the original elemental storage matrix, Eq. 3.11, is not
symmetric, preventing the use of algorithms typical of symmetric sys-
tems in the solution of the system of equations (3.40).

Symmetric matrix algorithms are faster than those for non-
symmetric matrices, and only require storage of the upper triangular
part of the matrix, Looking more carefully at matrix 8 as defined

earlier;

(3.11)

one can see that this matrix is only slightly non-symmetric, that is
the difference between the non-diagonal terms for the case of fresh-
water and seawater is of the order of 3% (Yslyf'¥ 1.03). One way of
avoiding the lack of symmetry is to consider two storage matrices:

*
one as defined by Eq. 3.40a, and the other using a symmetric matrix S

defined as
f 8
*
- M Y (3.51)
P s, 1
=11 A 5" +n Ay
to generate a symmetric storage matrix defined by:
* *
g=f B g" Haa (3.52)
e

A
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Introducing this matrix in the left-hand side of Eq. 3,50 gives
*

¢
(EY.’-K } X

where now the matrix inside the parentheses on the left-hand side is
symmetric*. Since Eg. 3.53 is solved iteratively this approximation
will eventually increase slightly the number of iterations,-but the
savings resulting from it are much greater.

Due to the particular form of the matrix ¢, only part of it
need be stored., One can consider § as being a summation of the

following matrices:

- ; f “
= X -n X
=§ S +n Ay n Ay
e s n L
-n A"{ S  +n AY
L- L
-
£ |
= Sf +n L 0
Ay
s 5
0 S +n %—
n A (3.54)
- JI—
+]o n 35
0 0
+ FO 0
bl
|7 °
x
1"I Appendix B th itive defini £
n e positive de teness of matrix (—— +
matrix (G + Bype) 18

verified.
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and the true storage matrix can be represented by:

¢ Fsgar| s gaa+| g5 gas
AE. Ae U a
A

L T (3.55)

Where the first term is a symmetric matrix, the second term is a
matrix symmetric in relation to a diagonal that is displaced one posi-
tion to the right of the true diagonal, and the third matrix is a
symmetric matrix in relation to a diagonal that is displaced one posi-
tion to the left of the true dilagonal. Due to this property only the

upper triangular part of these three matrices, C

Che QU’ C.,, needs to be

2L
stored.

Another aspect of the storage matrix is that it can be calculated
in a lumped way, that is as a tridiagonal matrix instead of as the full
banded matrix of the consistent case, However, it is advisable to use
the consistent storage matrix to obtain accurate results for seawater
intrusion problems, especially with higher order elements, because the
savings obtained by using a lumped storage matrix are marginal and the

accuracy less satisfactory. Later, comparisons of solutions obtained

using both methods are presented.

3.7 Solution of the Non~linear System of Equations

The governing equation has "two non-linearities": one resulting
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from the moving interface, the other associated with the water table
of a phreatic aquifer. These non-linearities require that an iterative
procedure be used to solve the system of equations. Fully iterative
methods, like Gauss-Siedel, SIP, LSOR, and ADI, so common in finite
difference models are seldom considered in finite elements. The recent
improvement: of high speed computers has made direct techniques more
attractive, Desai and Abel (1972) mention three baslc direct techni-
ques for solving non-linear problems by the finite element methoed:
incremental or stepwise procedures, iterative or Newton methods, and
step~iterative or mixed procedures., These methods converge in few
iterationg, usually less than 3-6, and according to Bathe and Wilson
(1976) thev are almost always more effective,

In SWIM a modified Newton method is used. To better understand
the details of this method let's consider as an example a steady state

problem for which Eq. 3.42 reduces to:

=

X=F (3.56)

To solve this problem using an Zterative method requires knowledge of

the applied flow F' and an initial guess for the state vector,.g(o).
With this value of‘g(o), a matrix 5‘0) is calculated, 1In the next step
an out of balance flow, Eo(l) is determined using:
PD -op g @50 g O (3.57)
—o - =g = - —e
(0) . (0)
where Ee is the flow equilibrated by the initial guess X' °. The
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superscripts In this equation represent the iteration number. The

out of balance flow 1s usually different from zero, because the initial

guesslg(o) is not often an exact solution for Eq. 3.56. This out of

balance flow is now equilibrated iteratively. The initial guess 3(0)

is modified by solving the following system of equations for gg(l):

0) 5 5 @

K
= -0

AX

(1) is the increment on the piezometric head, Ag(l) =.§(1)—x(°).

where AX
The matrix K is evaluated in the previous iteration. That is, 5(0) is
the "slope" of the surface [F,X] at the point [E(O),.E(o)], as illus-
trated in Fig. 3.5a, for the one-dimensional case. The plezometric
head at the end of this iteration is‘g(l) = E(o) + Ag(l). With this

(L

new value of X, the matrix K = g(g(l)) is evaluated and a new out

of balance flow is computed using:

F @ o p W) | g W30 ) @ oW
—o - = = - = = = - = -

Then éﬁ‘z) i3 calculated from 5(1) 95‘2) = 26(2). This procedure is

repeated untill the increments of the piezometric head, ég(i), or the

(1)

out of balance flow, j; s becomes zero or sufficiently close to zero
according to a pre-established tolerance criterion.

The general form of these equations for the ith iteration is:
kD (D g B (3.58a)
= -— -0

g L @D

X + A% (3.58b)
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Figure 3.5 - Iterative Methods for 1-D Problem: a) Tangent or Newton Method;
b) Modified Newten Method.
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Using_g(i) the matrix 5(1) is evaluated and,
(1) @ _pli-1)
LN = E-F, (3.58¢c)
Féi-l) ~ 5(1'1)_}5(1'1) - E(i—l)l(i-ﬂ) + 1=‘;(i-l)ﬂ(i—l) (3.584)

i

If the tolerance criteria is not satisfied the procedure is repeated.

This method is called the tangent procedure (Desal and Abel, 1972) and

is similar to the Newton-Raphson method for solving non—linear equa-
tions. This Newton-type iteration very effectively sclves problems

where large nonlinearities occur within the individual time intervals

(Bathe, 1979). It is usually convergent, but if the initial guess‘g(o)

is not close to the solution, the problem may diverge (Zienkiewicz,
1977).

A modified version of this method, that requires less calcula-
tions, uses the initial value of K throughout all iterations (Desal
and Abel, 1972). This procedure usually requires a few more total
iterations, hut on the other hand, only one decomposition ber time
step 1s performed. For this al ternative the iteration index for
matrix K in Eq. 3.58a is always (0). A graphical representation of
this method for the case of one dimensional case is presented in
Fig. 3.5b, 'The equations used in this method to solve the problem of

Eq. 3.56 are:

A
0

(0 L0y (0)
F-g’ X =F-F, (3.59)
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and for the ith iteration

K(O)_Qﬁ(i) N EY) (3.59a)

= -0

PO G S (3.59b)
(i) (i-1)

_F.:o - E _Ee (3.59C)

_Eéi—l) . 5(1-1)£(:L-1) _ 5(1"1)5(1'2) + 5(1_1)9_}5(1'1) (3.594)

Note that in Eq. 3.59d the matrix K inside the summation is updated.
However no assembly or decomposition of this matrix is necessary te

perform this step, as Eq. 3.59d is calculated at the element level,

The tolerance criterion used in SWIM to determine when to stop the
iterating is based on the Eucledian norm of the vectors involved.

For some vector y this norm is:

n

2,172

el = 2 ly, DY (3.60)
i=1

The calculation is said to converge at ith iteration, and the computa-

tion stopped for that time step, if the following relationship is satis-

fied:

i
| 1ax‘P ||

< TOL (3.61)

max| | X, ||
tll_t

where:
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max]|§t|| is the maximum Euclidean nﬁrm of the piezometric
’ heads calculated during the solution, and
TOL is the relative tolerance used to measure equilibrium
convergence.
It is also common to have in this type of numerical model a limit in
the maximum number of iterations. In SWIM the default values for TOL

and the maximum number of iterations are, respectively, (.001.and 15.

The modified Newton solution procedure for non-linear problems
has been adopted for the solution of the implicit time integration

scheme of Eq. 3.53

*
¢ ¢
GE * Berae! Xevae = Ferar * ot X (3.53)

The matrix C is assumed constant in time, while the matrix Et is up~-
dated every n time steps, n > 1. K. is decomposed into lZnear and

non-linear parts:

K = KI, -+ KNL (3.62)

where:

is the linear part of the K matrix, that belonging to a

confined aquifer without an interface; it is only calculated
once.
KL is the non-linear part of the K matrix evaluated at time t,

the only part that requires updating.

Table 3.1 outlines in detail the solution procedure for SWIM. At the
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beginning of each time step a new approximation of the piezometric
headlg(o) and the interface position are calculated using the results
of the previcus time step--a kind of prediction step. These initial
estimates Qﬁ(o)) are refined by iteration until the solution converges.
If the solution diverges, program execution ceases. The initial condi-
tions for a transient problem must usually be consistent: that is, the
initial states of the freshwater piezometric head and the interface

(or saltwater piezometric head) must be compatible with each other and
the initial boundary conditions, or the solution may diverge.

The system of simultaneous algebraic equations (e.g., Fig. 3.59%a,
or steps A2, B3 or B4d of Table 3.1) is solved by Gauss elimination
using L D ET factorization, followed by reduction and back substitu-
tion of the flow vector each time X or AX 1s calculated. The computer
storage requirements are reduced due to the fact that only the ele-
ments below the matrix skylines are stored. Bathe and Wilson (pp. 249-
258, 1976) present the details of the equation solver used. For

larger systems the solution procedure may require an out-of-core

solution, which is incorporated in SWIM.
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Table 3.1

Step By Step Solution Procedure of SWIM

INITIAL CALCULATIONS

1 - Form linear conductivity matrix KL and storage matrix c

*
2 - Calculate effective linear conductivity matriz K

¥ =x. +L ¢
= - At:

*

*
3 - In a linear problem, triangularize K.

FOR EACH TIME STEF

A - Linear problem

1 - Compute the effective flow vector:

* 1
Eorne " Eemne YA £ X

2 - Solve for nodal points heads at time t + At:

* *

B Xae = e

B - Non-linear problem

1 - For the first time step or if a new conductivity matrix K is
to be reformed, proceed as follows; otherwise go to Part 2
below. Calculate a new non linear part of K, KNL, using ini-
tial conditions for the first time step, or otherwise, using
the solution from the previous time step. Obtain a new total

%
effective conductivity matrix Et:
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Table 3.1 (Continued)

* + K*
Et - == =
£ K*
actor ¢
* T
L

2 = Compute the effective flow vector:

where Et'

3 -

*
Foine = Eepnr B X

KL + KL (Eq. 3.62)

(0)

Solve for nodal piezometric head increment A4X using latest D,

L factors. This is a predictor for‘géfgt =X + QEFO) that is al-

ways calculated regardless of the number of iterations allowed.

T (L g

k2L Eeeat

If equilibrium solution sought, iterate for flow equilibrium and
check for convergence. Initialize the iteration counter i = Q.
Then:

{a) 1i=41+1

{b) Calculate (i--l)St approximation to nodal point heads:

-1 (1-1)

Eine =X+ X

1-1)  (i-1)_ )
a X & ax-1)
dt

t+At at at
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Table 3.1 (Continued)

{c) Calculate the ith out-of-halance flow:

(i-1)
0 e gy X
-0 —t+At e = dt t+AE
(1-1) _  (i-1) L(i-1)
LN Serar Eerae i>1

{d) Solve for the ith plezometric head increments:

LDLT Ax(i) =F (L
- = o= -0

{e) Calculate new heads:

{0 0D

(1)
Eorar = Eppar Y AR

(f) Iteration converges 1f

i
|1z |
——— < TOL
max| X, [|
t
. If solution converges: X = X(i) and go to part C

—t+At  ~—t+AL

. If solution does not converge and if less than maximum number
of iterations allowed: go to (a)
» Otherwise restart solution using a new conductivity matrix

reformation interval and/or a smaller time step.
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Table 3.1 (Continued)

C - Calculate Nodal Point Solution

. - £
(a) Heads: §t+bt ¢11
s
¢!
%
%

(b} Interface depth:
i _ 1 [ ¢ s], £ \T
SedAr T By ['Y Y S

s T
W
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Chapter 4

TOE TRACKING ALGORITHM

4.1 Introduction

The previous chapters discuss the importance of tracking the toe
in the seawater intrusion problem. The numerical aspects of this
feature are presented and described in this chapter.

When thinking of seawater intrusion in aquifers, the term "toe"
usually represents the intersection of the interface with the lower
boundary, the bottom of the aquifer. However, there are situations
as illustrated in Figure 4.1, where the interface also intersects the
upper boundary. This occurs, for example, in a confined aquifer when
the top confining layer is semi-pervious and the piezometric heads in
both aquifer and confining layer are such that all the freshwater
flows upwards through the aquitard and into the shallow aquifer. The
Delta aquifer of Egypt offers and example (Wilson et al., 1979;
Hashish et al., 1979). The resulting "upper toe" is treated by SWIM
in the same way as the "lower toe". In this chapter when the term
"toe" is mentioned it implies the lower toe; otherwise, the qualifier
upper or lower, is used,

In the following sections different methodologies to track the
toe are presented, with the emphasis on the algorithm employed by
SWIM. This algorithm employs Gaussian quadrature points, used for
the numerical integration over the elements, to determine the position

of both the upper and lower toes. To evaluate the accuracy of this
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method, SWIM solutions are compared with thé analytical solution of

the gravitational segregation problem in porous media. For this situa-
tion the results of a sensitivity analysis are shown, to illustrate

the dependence of this technique to various parameters. The chapter
ends with the outline of some general guidelines for the use of the

Gauss points to track the toe,

4.2 Different Methods to Track the Toe Movement

Consider the following techmiques for tracking the movement of
the toe, which is a "moving front" or a "moving boundary condition",
for a finite element model:

1) ignore the position of the front inside individual elements,

2) mesh regeneration,

3) mesh displacenent,

4) use of Gauss quadrature points.

To simplify the description in this section the locus of points de-
fining the seawater wedge toe is called the front.

Consider the typical cross section of the interface near the toe
shown in Figure 4.2, and the plan view of the toe with an hypothetical
regular finite element grid represented in the same figure. Ignoring
the position of the front inside an element means that the front can
only be defined by the sides of the elements, as shown in Pigure 4.3,
Thus it is assumed that the front is never located in an intermediate
position within the element. Mesh regeneration represents the front by

regenerating a new finite element mesh at each time step, in such a way
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that the front 1s always defined by nodés. This technique is rela-
tively easy to implement in 1-D problems, as demonstrated by Shamir
and Dagan (1971). But it becomes rather difficult to implement for
the general 2-D problem with an irregular frontal shape, due to the
logic needed to properly set up a new mesh and the computational bur-
den of reforming all matrices. Figure 4.4 illustrates one simple type
of mesh regeneration, in which the nodes near the front are displaced
in only one direction, to match the front. It has been used, for
example, by Lefebvre et al. (1974) in a petroleum reservoir model.

The mesh displacement method is actually a type of mesh regeneration.
It uses a series of fixed node points at the front. At each time step
these nodes and the entire mesh are displaced with the front. This
method becomes very complicated and costly to use in the general

2-D field problem, where the front does not move in a regular fashion,
and when interest is focussed on the entire domain, rather than the |
zone moving with the front. It 1is often used for frontal displace-
ments in Stefan type problems (see Fisher and Medland, 1974; and Crank,
1974).

The fourth method uses Gauss quadrature points to indirectly
track the front position. In SWIM, as in most finite element models,
the spatial integrals of the discretized equations are evaluated
numerically using Gauss quadrature, Each integral is approximated by
a properly weighted sum of values of the integrand taken at suitable
locations distributed within each element. A Gauss quadrature with n

points gives an exact representation of a polynomial of order (2n-1).
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Figure 4.4 - Plan View of the Toe Location by a Mesh Regeneration Model
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It is usually suggested that for the eﬁaluatian of the conductivity
matrix, in 2-D elements, the optimum order of Integration is 2 x 2,
or 3 x 3 if the element is highly distorted or if saturated thickness
varies over quadratic elements; for storage and third type boundary
matrices a 3 x 3 order is used (Bathe, 1976, 1979). The term m x m
for 2-D elements refers to the number m of Gauss points oriented

in each of two mutually orthogonal directions of the local coordinate

system r, s.

When using the Gauss points to track the front, the interface
position is determined at each Gauss point and compared with the ele-
vation of the bottom of the aquifer at the same location, in order to
determine the presence of a seawater layer. In other words two sets
of Gauss points are implicitly defined for the conductivity matrix:
one inland of the front where there is no seawater; the other seaward
of the front where there are twe layers, one of freshwater the other
of seawater (see Figure 4.5). For computational purposes the model
recognizes that the front lies between these two sets of poluats, al-
though the actual front position is never directly calculated and used
in the computation. The front 1s directly located only for output
purposes, for which various post-processing techniques are discussed
later. When the front is inside an element the quadrature order for
the conductivity matrix Iis usually increased to 4 X 4, as shown in
Figure 4.5, to better define the front, especially for large and/or
distorted elements. This technique is c¢learly more accurate than ig-

noring the front inside the element. It 1s also less expensive and
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Figure 4.5 - Plan View of the Toe Location by a Model Using the Gauss
(Quadrature Points and Linear Elements (SWIM)
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as accurate as mesh regeneration or displacement. In the following
gections the details of this technique are discussed. A similar
approach was used by Bathe and Khoshgoftaar (1977) to determine the

free surface position in a vertical 2-D model for seepage problems.

4.3 Use of Gauss Points to Track the Toe

SWIM is a 2-D model in the horizontal plane. However, for the
sake of simplicity of the figures in this section, 1-D examples are
used without loss of generality. To judge the merits of the technique
proposed, SWIM was applied to a simple problem with an analytical
solution: one dimengional gravitational segregation in a porous

medium.

4.3.1 Gravitational Segregation Problem

Suppose that two fluids of different specific weight, Yf and YS,
occupy the pore space of an horizontal confined aquifer of height b |
as shown in Figure 4.6a, The fluids are separated by an immiscible
interface, that is initially oriented in the vertical direction. As
time elapses the heavier fluid YS displaces the lighter fluid Yf (see
Figure 4.6b). The interface is described by the simple expression

(Gelhar et al., 1972)

5

b =% (b + -5 (4.1)

T

in which:

b° = the thickness of seawater below the interface

T = Koyt = dimensionless time
n yb
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K = permeability

n = porosity
t = time
s f
Ay = ¥y -y
f
Y = ¥

Eq. 4.1 says that the interface shape is a straight line, The loca-
tion of the interface toe L, either lower (-) or upper (+), is des-

cribed by:

L =+ b/t (4.2)

which indicates that the rate of displacement decreases with time, as
the density gradienté are damped out, as also shown in Figure 4.6c.
For the examples of this chapter the following parameter values
have been used for the analytical solution of the gravitational segre-
gation problem:
X = 39.024 m/day

£

Y ¥y =1,0 g/cm3

¥ = 1.025 g/em”

Ay = 0.025
n = 0,3

b = 10.0m

These values are identical to those used by Shamir and Dagan (1971) for
their finite difference numerical simulation of this problem using mesh
regeneration. In the SWIM numerical simulation of this problem:

kf=k= 39.024 m/day

k%= 40.0 m/day
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4.3.2 Description of the Technique

A vertical cross section of the lower part of the interface of the
gravitational segregation problem is represented in Figure 4.7a, along
with a one dimensional finite element grid. For the Causs points sea-

ward of the toe, to the right in Figure 4.7a, the transmisgivity of

5

the seawater is given by the product of the seawater permeability, K,

and the seawater thickness, bs, which is the distance between the
interface and thé bottom of the aquifer. For the Gauss points inland
of the toe, to the left in Figure 4.7a, the seawater transmissivity is
zero, because seawater does not exist there. However, in order to
preserve the positive definitness of the conductivity matrix it is
necessary to assign a small positive value for the seawater trans-
missivity at these points. This procedure is equivalent to assuming
that inland of the toe there is a very thin seawater layer, underneath
the freshwater, and that the permeability of this layer is very small
compared with the usual KB, say 105 times smaller. That is, the perm—
eability follows a spatially non-linear rule, as shown in Figure 4.7b.
The rule is time dependent, because the discontinuity point, at the
front, changes position in time. In summary, this methodology assumes
that there are two layers, one of freshwater and the other of seawater,
over the entire aquifer domain, or at least over the area subject to
seawater intrusion. Inland of the toe the transmissivity of the sea-
water layer is for practical purposes zero and does not affect the
solution,

The finite element method is an integrated method and thus tends
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Figure 4.7 - Toe Representation Using Gauss FPoints:
a) Toe Location in a Finite Element Grid;
b) Permeability Variation at the Toe.
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to smooth sharp transitions, such as the one present at the toe. If
the very thin layer (with thickness be) of seawater inland of the toe
is considered above the bottom of the aquifer, as shown in Figure 4.8a,
the smoothing of the interface at the toe zone will result in an
acceleration of the front. On the other hand if the same layer of sea-
water is now considered under the bottom of the aquifer, the same
smoothing occurs but now the location of the front is determined by the
intersection of the interface with the bottom (see Figure 4.8b) and
the acceleration effect disappears. However, 1f the thickness of this
layer of seawater below the bottom becomes too large, the role of the
storage in this layer becomes important and a deceleration is experi-
enced by the front, as illustrated in Figure 4,8¢c. The effect of using
the seawater layer above or below the bottom of the aquifer does not
affect the calculation of the position of the interface elsewhere; as a
matter of fact for small values of the thickness of this laver the
position of the interface at the second or third node seaward of the
toe is practically unchanged. Figure 4.9 schematically represents the
interface for the gravitational segregation problem as used in the
SWIM code, as well as the rules of spatial variability of permeability
and transmissivity for both freshwater and seawater. All simulations
described in this report are based on an extra-thickness below the
bottom of the aquifer, as shown in Figures 4.8b and 4.9,

Figure 4.10 presents a flow chart illustrating the use of this
technique in SWIM. This flow chart does not pretend to be exhaustive
in detail. Rather, it synthesizes what has been said about the techni-

que and connects it to the description of SWIM given in Table 3.1.
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Matrix in SWIM
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In the follwoing sections the results 6btained for the numerical
simulation of the gravitational segregation problem for different
space and time discretizations, as well as for different values of the
"extra-thickness" and its permeability, are presented. This presenta-
tion only concerns the immediate vicinity of the toe, because away from
it the solution is not very sensitive to the various options consid-

ered.

4.3.3 WNumerical Simulation

The analytical solution of the gravitational segregation problem
is for an interface that is initially vertical. 1In a numerical model
this initizl condition requires a very detailed grid around the ori-
gin, and a very small time step in order to capture the early inter-
face movement. Since this early movement is of no particular interest
here, the initial condition (see Appendix C) used in the numericatl
simulation was taken as the position of the interface position after
L=t = 7.87 days (1 = T, = 2.56). At this time the positions of
the upper and lower toe are, respectively, L/b = +1.6 and L/b = -1.6,
or L = + 16.0 m. The simulation results obtained using a 136 m long
regular grid, consisting of 4-node linear elements with a spacing of
Ax = 4.0 m (Ax/b = 0.4) in the longitudinal direction (similar to, but
longer than, grid 1 of Figure 4.18), are presented in Figures 4.11 and

4,12, The parameters used for this simulation were:

n=20.3

xf = 39.024 m/day

105



. IvvFA9IU]
ay3 103 SUOTINTOS WIMS Pu® TROFiLTePuy uddmlag uosTiwdmo) ‘warqoid uop3e8018ag TeuorleEITARID - TT°'H 2In814

{wy X
09 ov 0¢ o) 0e- ov- 09-

WIMS =
NOILNT0S TVITLATYNY ——

—(w)

106



(sAep QQT) IURWIAOK 0L
ayy I0J SUCTINTOS KIMS PuUe TEoTIATRUY usamjag uosFaedmo) ‘uwatqoag uoyiefaidag TEUOTIBITARID - TT'Y 3andTq

(skop)® -4
00t 06 08 04 09 0¢ 101 4 o¢ 02 Ol 0
1 1 1 1 1 1 - 11T+ 1 1t © © 1 7T"1

S34GON o

WIMS o
NOILNTOS IVIILATYNY

- (w

)
|
H -
W

09

107



K® = 40.0 m/day

At = 1.0 day (At = 1/3)

First type boundary conditions for both freshwater and seawater phases
were specified at the two nodes at the far left of the grid (see
Appendix C). A no flow condition was used elsewhere. In Figure 4.12
the toe location 1s shown only every f£ifth time step; the locations of
node points are given along the right-hand side vertical axis.

To evaluate the toe position, as shown in Figure 4.12, SWIM re-
sults were post processed. Different alternatives were available
for this purpose, among them the use of interpolation functions and
extrapolation techniques. Since both the interface and interpolation
functions were linear, a linear extrapolation using the interface
elevation at the two nodes inland of the toe was used. This techni-
que was also used when a quadratic grid was employed. Section 4.3.5

further discusses the subject of locating the toe for output purposes.

4.3.4 Sensitivity Analysis

The factors that can influence the solution for the interface,
and particularly the "location" of the toe, can be divided in two
groups: factors intrinsic to the toe "tracking" method such as the
permeability and thickness of the.extra—layer, the number of Gauss
points, and the post—processing method of toe location; and factors
extraneous to the method such as the space discretization, the time
step, the mumber of time steps between updating the conductivity

matrix, and the use of a consistent or lumped storage matrix.
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Comparison of the solution sensitivity'to these various factors
is made relative to the "basic simulation", the results of which have
already been shown in Figures 4,11 and 4.12. The specifications for

this simulation, and all other sensitivity simulations unless otherwise

noted, are:

-Grid Grid 1 of Figure 4.18

-Gauss points in toe
elements 4 x 4

-Initial conditions t, = 7.87 days, T, = 2,56

-Time step At = 1 day, A1 = 1/3

—Permeabillity of the IO-SK, where K is the corresponding
extra-layer aquifer permeability, Kf or k8

~Thickness of extra- be = 10_3b, where b is the aquifer
layer thickness

~Storage Matrix Congistent (not tri-diagonal)

-Updating of Effective
Conductivity Matrix Every time step

-Method of location
of the toe Extrepolation

The sensitivity analysis examines the first 20 days (T—To = 20/3) after
the initial conditions for the basis of comparison and, therefore, a
slightly shorter grid (100 m) was used. Furthermore, since most of the
simulations reproduced the interface shape of Figure 4.1l accurately,
the comparison concentrates instead on the identification of the toe
location from nodal values of the interface elevation, as in Figure
4.12. The extrapolation method of identification (see Section 4,3.5)
is used unless otherwise noted. The first 20 days of Figure 4.12 are

repreduced at a larger scale in Figure 4.13. Once again the node
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points are located on the right-hand side vértical axis of the fig-

ure, as they are for most similar figures in this chapter.

4.3.4.1 Sensitivity to the "Extra-Layer" Algorithm

The extra-layer must be thick enough to absorb the smoothing
typical of the finite elements near the toe. However, this thickness
should not be so large as to lead to spurious solutions., The pérnr
eability of this extra-layer (Ke) should also be kept small compated to
the aquifer permeability (K) to avoid significant flow through this

layer. At first guess a reasonable order of magnitude for the ratio

Bg_ . thickness of the extra-layer

b aquifer thickness

1 to 10'-4 were

of 10-3 seems acceptable. Values ranging from 10
tested. The permeability ratio (KE/K) was varied from 10“3 to 10_8.

No significant variation in the solution was found for the inter-
face position, and consequently for the toe location, for different
permeability ratios. For values smaller than 10_5 the results were
identical up to the fifth significative digit. The value of 10“5 for
the ratio of permeabilities (Ke/K) was adopted as a standard.

For the larger values of the extra-layer thickness ratio (be/b)
the movement of the toe was significantly slowed, due to storage
effects in the extra-layer and due to the smaller permeability that
seems to decelerate the toe movement. The best results were found for

the ratios of 10*3. The results for the ratios of 10_2, 10-3 {the

basic simulation) and 10-& are plotted in Figure 4.14.
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For the ratio of 10-4 the effects of a slight acceleration appear,

as one would expect if no extra-layer existed. However, this accelera-
tion disappeared when a time step four times smaller was used (see
Figure 4.15); the results of this simulation are practically equival-
ent to those of the basic run, indicating some dependence between the
time step and the thickness of the extra-layer. Later, it is shown
that the thickness of the extra-layer, the time step and the space dis-
cretization are related; however, no explicit expression for this rela-
tionship has been found.

Analyzing the toe movement in Figure 4.14 for the ratio be/b = 10_2
reveals a backward jump between t—to = 6 and 7 days and, again, between
15 and 16 days. These jumps are attributed to the large extra-layer
thickness and to the method of calculation of the toe location. TFor
t-t0 = 3 or 6 days the linear extrapolation uses the nodal interface
elevation at x = 12 and 16 m, because at x = 20 m the model has failed
to recognize the presence of seawater yet. Nevertheless, the extrapola-
tion projects the toe position to fall between x = 20 and 24 m. At
t—to = 7 days the interface at x = 20 m rises above the bottom of the
aquifer, and the nodal points used to locate the toe shift to x = 16
and 20 m. However, due to the small difference of elevation between the
bottom of the aquifer and the interface at x = 20 m, the extrapolation
excessively underpredicts the toe location, originating the backward
Jump. Later, for t-to > 7 days, the toe begins to recover until it
reaches the next element boundary. Then the same thing happens again.

This behavior appears every time the toe crosses an element bound-
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ary and a "large" extra-layer thickness and/or large grids are used.
For the basic simulation a similar phenomenon was observed when an
element boundary was crossed, although it was of no significance. 1In
that case the rate of tce movement was reduced slightly as the bound-
ary was crossed, resulting in a minor underprediction of toe position
for that time step. The prediction recovered in succeeding time steps.
The situation can be observed inm the last few time steps of Figure
4.13.

It must also be mentloned that the toe location error does not
vary linearly with the extra-layer thickness. The solution for a thick-
ness ratio be/b =5x 10'-3 lies between the solutions for ratios of 10_2
and 10_3, but much closer to the solution for 10_3 than to the one for
1072,

The interface position inland of the toe sometimes shows spatial
oscillations due to the abrupt change of gradients, as illustrated in
Figure 4,16. For example, an extra-layer thickness of be =10 b
leads to oscillations above the bottom of the aquifer (see Figure 4.16b)
for the firsz 72 days of simulation. But for be =5 x 10_3b the
oscillations never appear above the bottom of the aquifer (see Figure
4.16c), indicating that the extra-laver has "absorbed" them. The os-
cillations are of minor relevance to the effectiveness of the algorithm
and are typical of numerical methods. The extra-layer thickness for
the basic run was selected to obtain the best results for interface and

toe location, using the value of be = 10"3b, even though this meant some

minor oscillation of the interface inland of the toe. The amplitude of
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Figure 4.16 Numerical Oscillations of the Interface Inland of the Toe:
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these oscillations seems to be related to the angle between the interface
and the bottom of the aquifer: larger angles tend to lead to oscilla-
tions. In the gravitational segregation problem this angle is larger

than those usually observed in field problems.

4.3,4.2 Sensitivity to the Number of Gauss Points

To study the sensitivity of the toe tracking algorithm to the num-
ber of Gauss points, 2 x 2, 3 x 3 and 4 x 4 Gauss points were used to
integrate the conductivity matrix within elements containing a toe.

The results of these runs using grid 1 of Figure 4.18 were essentially
1dentical; therefore, simulations with a larger grid, grid 5 of Figure
4,18, were performed., This grid uses elements twice as leng as those

of grid 1 of the same figure. Again the results obtained are indist-
inguishable when plotted at the scale of Figure 4.17, where only the
results for the case of 4 x 4 Gauss points are shown. Table 4.1 pre-
sents numerical values of the toe location, L, for the analytical solu-
tion and for the three cases of Gauss polnt density; again there are
only minor differences in the numerical solutions. Table 4.2 presents
the mean and standard deviation of the differences from the analytical
solution for each case. The 2 x 2 solution shows the smallest mean

but the largest standard deviation, and the 4 x 4 solution the smallest
standard deviation. Despite this minor improvement in solution aceuracy,
and because of {ts small marginal cost, 4 x 4 integration is recommended
for elements containing the interface toe, particularly for highly

distorted elements.
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Table 4.1 Toe Location Predictions for Various Densities
of Gauss Points Using Grid 5

Toe Location L (m)
Number of Gauss Polnts

t-t Analytical 4 x 4 Ix 3 2 x 2
(days)

1 16.988 16.663* 16.663* 16.663%

2 17.918 17.432 17.431 17.435%

3 18.803 18.287 18.286 18,296%*

4 19.649 19.203 19,202 19,221%

5 20,460 20.146 20.147 20.175%

6 21.2540 21.089 21.097 21.158*

7 21.992 21,998% 22,013 22.041

8 22,719 22.854%* 22.867 22.891

9 23.424 23.634% 23,645 23.665
10 24,108 24,196 24,188 24,168%
11 24.773 24.643% 24,636 24.616
12 25.421 25.149% 25.141 25.122
13 26.053 25.708% 25.699 25,682
14 26.670 26.315% 26.304 26,291
15 27.273 26.959% 26.946 26.941
16 27.863 27.629% 27.614 27.622
17 28.440 28,311 28.297 28,323%
18 29.006 28.994% 28,981 29.025
19 29.561 29.664 29.655% 29.710
20 30.106 30.315 30.313% 30.372

Note: The * indicates the numerical solution closest to the analyti-
cal solution.
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Table 4.2

Statistics of the Deviations from the Analytical Solution

Using Grid 5
Number of Gauss Points
Basic
Simulation
Statisties 4 x § 3 x3 2 x 2
Mean -0.164 -0.167 ~0.152 -0.028
Standard 0.232 0.235 0.248 0.123
Deviation

4.3.4.3 Sensitivity to the Space Discretization

Figure 4.18 presents the finite element grids used for this analy-
sis. Grid 1 was used for the basic simulation; grid 2 is a more de-
tailed 4-node linear grid with four times more elements in the zone of
toe movement; grid 3 uses the same number of nodes as grid 1, but with
6-node quadratic elements; grid 4 has the same element size as grid 1,
but uses quadratic 6-node elements in the zone of toe movement; grid 5,
already described in the previcus section, has linear elements twice
as long as those of grid 1. A constant time step At = 1 day and a
constant thickness of the extra-layer of 10_3b was used for the simula-
tions with the five grids. In the case of grid 2, this gives less
accurate results, because the toe moves across more than one element in
one time step, a condition to be avolded (see Section 4.3.4.4).

All five grids resulted in accurate representations of the inter-

face, but some of the grids did not perform as well in locating the toe.
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Figures 4,19 and 4.20 present the toe loéations for these simulations;
the basic simulation results using grid 1 are plotted in both figures,
to be used as a term of comparison.

Figure 4.19 shows the results of the simulations using grids 2
and 4, both containing more nodes than grid 1 in the zone swept by the
toe. Additional node density should provide a more accurate toe loca-
tion. However, because of the extrapolation method of toe locationm,
it was found that it is advisable to have this detail also extend to
the element just preceeding the toe, instead of having the initial toe
position coincident with the boundary of a significant change of element
size and/or type. One of the consequences of not providing this trans-
ition zone in the grid is shown in Figure 4.19, in which an initial
acceleration of the toe 1s present. The model could never recover from
it. The predicted toe leocation for grids 2 and 4 is correct in pattern,
but shifted. Using grid 2 and grid 4, but a later initial condition,
at té = to + 5 days, additional simulations were performed, and the
results are shown in Figure 4.21. In this case the grid is now detailed
on both sides of the initial tce location and the toe prediction is
significantly improved.

Another reason for the ghift of Figure 4.19 is the size of the time
step, especially for the case of grid 2. In order to have an accurate
representation of the toe location, the toe should take at least one
time step to sweep through any element. When this condition 1s not
satisfied, the toe position is accelerated. After the first time step,

in the example of grid 2, the theoretical location of the toe 1is pract-
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ically at the end of the first small element (16.986 m va. 17.0 m),

As a result the model is unable to capture the movement of the toe
across the element and a less accurate prediction results. The model
locates the toe at 18.05 m in grid 2; that is, at the beginning of the
third small element, and over a full meter from its proper location.
However, 1f a smaller time step is used, for example one fourth of the
original one, At = 0,25 days, a much better result is obtained, as
shown in Figure 4.22. An even better result is showm in Figure 4.21
when a later starting time is used to avoid the element size discontin-
uity problem,

The results obtained with grids 3 and 5, as shown on Figure 4.20
are satisfactory. Both grids have the same element size, but grid 3
uses 6~node quadratic elements versus the 4-node linear elements of
grid 5. The results obtained with grid 3 are better than those ob-
tained with grid 5, as expected. One of the reasons that the resultsl
with these two grids are comparable in quality with the results of the
basic run is that the toe takes twice as much time to sweep the elements,
which are twice as large, than is the case of the basic simulation., The
results are also not as good as the basic simulation because the elements
are twice as big, and therefore, there are only half of the number of
Gauss points for the same area.

In summary the quadratic elements perform better than linear
elements of the same size, but at a higher cost due to the increased
bandwith. The primary advantages of the quadratic elements are a better
representation of the boundaries and of the interface and plezometric

head surfaces. However, in this particular problem these advantages are
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not so apparent, because the interface is a plane, and linear eclements
represent it precisely.

A comparison of costs for these simulations is of interest. The
computer used was an IBM 370/168 with a virtuzl memory system (VM/CMS).
The CPU times are compared in Table 4.3 in terms of ratios relative to
the basic simulation which took = 32 CPU seconds.

The accuracy of a problem solution depends on the selection of
grid detail and time step size, both of which also determine the cost
of the run. Some guidelines for the selection of space and time dis-

cretization are summarized at the end of this chapter.

4.3.4.4 Sensitivity to the Time Step

The selection of time step depends on a tradeoff between accuracy

and cost, with the extra-layer thickness playing a role that has not

Table 4.3

Comparison of CPU Times Used with Different Grids

Ratio of Half Band Width
Grid Number of Type of Grid
CPU Tinme Nodes Mean Maximum
1 1 1 linear 7 8
2{At=1 day) 1.60 1.96 linear 7 8
13 1.06 1 quadratic 9 12
4 1.21 1.32 linear/quadratic| 8 12
5 0.54 0.52 linear '7 8
2(At=1/4 day)| 5.43 1.96 linear 7 8
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yet been clarified. As a general rule the smaller the time step, the
better the accuracy and higher the cost. However, for a given space
discretization, there is a value of the time step below which there is
no improvement of solution accuracy for given boundary conditions.
There is also an upper limit of the time step dictated by the physics
of the phenomenon. If the problem is cyclic this value roughly ranges
between 1/20 and 1/40 of the period; if the problem is not repetitive
then the upper limit of the time step is imposed by the temporal
variability of the boundary conditions and the total solution time,
These are somé of the broad issues behind the time step sizing
problem. The restriction on the time step imposed by the toe movement
are superinposed on these; the toe movement restriction is usually
more binding. Since the toe movement is tracked by the Gauss points, a
very rapid movement through several Gauss points in one time step is
an undesirable feature, leading to local acceleration of the solution,
as already shown in Figures 4.19 and 4,22 for the grid 2 simulation.
A reasonable upper limit for the time step is that the toe should not
move across an entire element in only one time step. A lower Iimit,
below which no significant improvement on the accuracy of tracking of
the toe is expected, is half the time it takes the toe to travel between
the two closest Gauss points in the grid.
From these principles one can infer that the smaller the grid in
the vicinity of the toe, or the wmore Gauss points used, the smaller
the required time step. The celerity of the toe is largest at the ini-

tial time step, T = T, °F t = t,s for the example problem. From Eq. 4.2:
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3(L/b) 1
v = AT .

T T Ytit

8] o [+

% £ 0.31 (4.3)

Applied to grid 1 of Figure 4.17, with 4 X 4 Gauss points, the follow-

ing limits for the time step are found:

Lower limit
s length of the side AX = 4 m
esmallest distance between Gauss points Ax x 0.14 = 0.56 m
0.14 Ax .
ATmin 7 b)lv 0.09 = 1/11
or
Atmin = 3/11 = 0.27 days
Upper limit
Ax -
ATmax b)/v « 1,28
or

At = 3,84 = 4 days
max

For the standard simulation the time step used is approximately four
times the minimum, At = 1/3 or At = 1 day.

Simulations using a time step of At = 1/12, 1/6, 2/3 and 4/3, or
At = 1/4, 1/2, 2 and 4 days, were performed and the results are shown
in Figure 4.23. As expected the larger time steps result in less
accurate predictions of the toe location; the interface position is
well modeled, however. The smaller time steps slightly under predict

the location of the toe, which 13 explained by the relationship between
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time step and extra-layer thickness pointed out in Section 4.3.4.1.
Locking back at Figure 4.15 one can see that a smaller time step per-
forms better with a smaller extra-layer thickness. This fact increases
the complexity of the space and time discretization selection process,
because the selection of the extra-layer thickness also plays a role.
Generally, one selects the grid and the time step first, and after-
wards selects the extra-laver thickness.

Table 4.4 presents the CPU time required for this differemt simu-
lations. An interesting fact shown in this table is that with the ex-
ception of the smaller time step, the CPU ratio increases geometri-
cally with decreasing time step, at a rate constant of 1.53. Perhaps
the reason for the exception of the smaller time step, a CPU ratio of
2.95 instead of 2,37, is due to the additional effort in performing

marginal tasks in the code.

Table 4.4

CPU Time for Simulations with Different Time Steps

Ratio of
AT At CPU Time Total Number of Time Steps
(days)
1/12 0.25 2,95 4.0
1/6 0.5 1.55 2.0
1/3 1 1.0 1.0
2/3 2 0.65 0.5
473 4 0.43 0.25
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4.3.4.5 Sensitivity to the Number of Time Steps Between

Reformation of the Conductivity Matrix

In the simulations desecribed thus far the effective conductivity
matrix, K* (defined in Table 3.1) has been updated every time step,
which is the best way to keep track of the changing interface in SWIM.
However, if the interface does not move rapidly there is no need to up-
date this matrix every time step, saving some computer time. Simula-
tions have been performed in which the effective conductivity matrix
is updated, respectively every 2, 4 and B time steps. As demonstrated
in Figure 4.24 the results for the first two simulations are very close
to those for the basic simulation, with updating every time step. The
results of the simulation with updating every eighth time step are not
as good but still acceptable. For the time step t-to = 13 days the
out of balance flows were larger than the incremental flows after
10 iterations; in this situation the code automatically updates the
effective conductivity matrix, to insure solution convergence. A
simulation with updating specified every tenth time step was also
attempted. But, again, the code automatically updated at the 9th and
later at the 16th time step anyway, to obtain convergence.

The CPU time requirements for these simulations are presented in
Table 4.5, once again in terms of the CPU time required in the basic
simulation. The savings obtained when going from every 2 to every &4
time steps is marginal. Updating every 8th time step takes more CPU
time, because of the number of iterations used when no convergence was

obtailned, at t--to = 13 days.
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Table 4.5

Comparison of CPU Time Used with Different Reformation Intervals

for the Effective Conductivity Matrix

Number of time steps Ratio of
between reformation CPU time
1 1
2 0.89
4 0.87
8 1.08

4.3.4.6 Sensitivity to the Consistent Versus Lumped

Storage Matrix

All the results presented thus far have used a consistent storage
matrix. It is generally known that a lumped storage matrix will not
perform as well for the type of boundary non-linearity modeled by SWIM.
Nevertheless simulations using a lumped matrix and grid 1 of Figure 4.18
were run. Different values for the extra-layer thickness were used
to judge from the influence of this factor with a lumped storage
matrix. The resulting tce locations are shown in Figure 4.25; they
are the least accurate reported in this chapter. However, it should
be noted that the interface itself is reproduced far better than these
toe location estimates may suggest. This will be demonstrated in
Section 4.4,

No difference in CPU time was noticed for the two runs. Therefore,

as a general rule the lumped storage matrix should not be used. It is
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expected to perform even leas satisfactorily when distorted quadratic
elements are employed. Alas, there is an exception. Lumping the
Storage matrix improves the positive-definiteness of the effective
conductivity matrix, K*. In certain situations of time step, grid
geometry and physical properties, lumping may be required in order to
avoid a non-positive semi-definite matrix and to solve the system of

simultaneous equations,

4.3.5 Post-Processing Calculation of the Toe Location

The toe position is calculated only for output purposes. A post-
processing calculation of the toe location makes it easier to disting-
uish the real toe from fictitious ones that sometimes are produced by
oscillations of the interface inland of the lower toe (see Figure 4,16b)}.

SWIM was designed to be used for the simulation of field problems
that often require irregular finite element grids. Therefore the loca-
tion of the toe, for output purposes, should be obtainable for any
type of grid that may be encountered. The most obvious location tech-
nique is the use of Interpolation functions at the elements containing
a toe or front. These functions can be used to determine, for example,
the intersection of the front with the side of the element. This has
the advantage of being relatively simple to implement because it re-
duces a 2-D problem to a 1-D problem along element sides. However,
considering the case of the linear element of Figure 4,26a,b, the
interface position at two nodes are required: one at the node immed-
iately inland of the lower toe (node A), and the other at the node

immediately seaward of the same toe (node B). Due to the way toe
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tracking algorithm works, the "interface" depth below the bottom of

the aquifer at node A is very small compared with the interface eleva-
tion above the bottom of the aquifer at node B. With a linear inter-
polation the toe will always be located at the end of the element near
node A, as shown in Figure 4.26a and b (for the case of a quadratic
element, see Figure 4.26¢ and d). Instead of using the actual "inter-
face" elevation at node A, another surrogate interface elevation can
be calculated using the piezometric heads at node A and the interfacial
boundary condition (Eq. 3.3) by ignoring the presence of the aquifer
bottom and the artificial 1limit to the depth of the interface below it.
This new value is only used for output purposes and produces more
accurate results, as shown in Figure 4.26e, f. As a matter of fact,
this is identical to the method used for checking whether or not a
Gauss point is inland or seaward of the toe. This method can be expen-
sive, depending on the complexity and distortion of the grid.

Ancther method, that is cheaper and easier to implement, uses
extrapolation along the element sides. Extrapolation fits a straight
line through the interface deviation at the two nodes seaward of the
toe in the case of linear extrapolation, or a parabola through the
three seaward nodes in the case of quadratic extrapolation, regardless
of whether or not these nodes are corner or middle nodes (see Fig-
ure 4.26g and h). Extrapolation is easy to implement if the grid is
regular; that 1s, if the sides along which the toe 1s located define
a straight line. Otherwise the computational effort involved is

significant.
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The location of the toe for output purposes is definitely prob-
lem dependent, usually grid dependent, and is a question that should
be tailored to the requirements of the user. For these reasons it was
decided to handle this question using post-processing.

Both linear and parabolic extrapolations were used. The linear
extrapolation demonstrated a slightly better agreement with analytical
sclution, which is not surprising because the shape of the interface
is a straight line, However, in other problems in this work (see
Chapter 5) linear extrapolation was also used for both linear and quad-
ratic elements because of: 1ts simplicity, ease of implementation for
complicated grids and its accuracy. In one simulation, described imn
Section 5.7, the interpolation functions were used, with excellent re-
sults. As explained above, the interface location inland of the tce
was computed, in this example, using the piezometric heads.

As a final note on this subject, it is suggested that the locatidn
of the toe for output purposes can also be very satisfactorily achieved
by using graphic packages that are currently available for plotting
contour lines and perspectives of surfaces. This was not attempted in

the present work.

4.4 Summary and Guidelines to the Use of Gauss Points to Track

the Toe Location

The previous section of this chapter has compared the different
solution options in terms of the model's ability to track the toe loca-
tion, Only brief comments have been added suggesting that the overall

shape of the interface has been modeled more or less accurately, with
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the only exception concerning the nodes located near the toe. To let
the reader judge this accuracy, Figure 4.27 presents the "worst" five
simulations in terms of toe tracking presented in this chapter, together
with the basic simulation. Thus, in Figure 4.26a, the following
simulations are presented: from Figure 4.14, an extra-layer thickness
of 107 b; from Figure 4.23, At = 2 days and At = 4 days. Figure 4.27b
presents the results of the basic run and two runs, from Figure 4,25,
using lumped storage matrix with extra-layer thickness of 10_4b and
5x10-3b. In all of these "worst" cases, the model reasonably predicts
the interfaces location, except near the toe. Further comparisons
with Shamlr and Dagan's (1971) mesh regeneration solutions are shown

in the next chapter.

It has been demonstrated by the results of the different simula-
tions that the solution accuracy depends on a relationship between
element size, time step and extra-layer thickness, and that these are
the three more important factors to be considered when preparing the
data. Other considerations, not as important as these three, are:
permeability of the extra-layer, fixed at 10_5 times the permeability
of the aquifer; use of a consistent storage matrix; and the number of
time steps between updating the effective conductivity matrix, Kk, Up-
dating K* every time step always works well, but is not always neces-
sary, especlally for a slowly changing interface and/or simulations
with small time steps. When K* is updated periodically it is advis-

able to set rhe number of time steps between reforming K*, to be a
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submultiple of the number of time steps between outputs, That is, K*
should always be updated when an output is requested, in order to insure
the best possible recorded solution.

Associated with the grid and time step sizes are the number of
Gauss points (order of quadrature) used for conductivity matrix inte-
gration in those elements containing a toe. The order of quadrature
for these elements should be at least the same as that used for ele—
ments not containing a toe. Since the number of elements with a toe
Is usually small compared with the total number of elements in a grid,
a 4 x 4 quadrature is recommended because additional CPU time is margin-
al and it will insure a less variable solution for any type of element.

The required degree of solution accuracy for toe tracking deter-
mines the size of the elements. As a rule of thumb, a maximum error
of the order 1/4 of the element size, in the direction of the toe move-
ment, can be expected, and this will determine the size of the grid.
The best type of element depends on the shape of the interface., Linear
elements have performed very well in these tests and they show some
savings on CPU time due to a smaller bandwidth, but one should remember
that in these examples the interface is linear. Theoretically and
practically, juadratic elements perform better. But the increase in
accuracy does not always justify the Increase in cost. The choice of
the type and size of element, as with many other elements of numerical
modeling is a question of experience. Only with time can one learn to
make the best decision at first try.

The selection of the time step should be based on the variability
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of the boundary conditions, and the condition that the toe should take
more than one time step to move across any element it encounters. To
be more gspecific the toe should travel the distance between the two
closest Gauss points no slower than two time steps and no faster than
half a time step. The distance between Gauss points is given in

Table 4.6 in terms of the length of the shortest element side, &. Note
that the shortest element side should be oriented parallel to the
direction of the toe movement,

Based on the experience in this work the extra-layer thickness is
best given by b, = 10—3b, where b is the thickness of the aquifer. It is
combined with a time step that allows the toe to cover the distance
between the two closest Gauss points in one time step, in a 4 x 4
scheme. Under these constraints b, = 10_3b has provided the best re-
sults and i3 recommended in general. However, if one selects a smaller
time step a smaller extra-layer thickness should be specified, for

example 10_4b for the minimum time step recommended above.

Table 4.6

Distance Between Gauss Polnts

Order of Gauss Quadrature | Smaller Distance Between Gauss Points

2 x 2 0.42 x &
I x3 0.22 x £
4 x 4 0.14 x ¢
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In this chapter a method has been presented that indirectly
tracks the toe. It has been shown to accurately represent the toe
position as a function of time, as well as the interface itself.
Sensitivity snalysis has been performed to identify the important
parameters in the algorithm. They prove to be: grid type and size and
time step size, as in any finite element model; and thickness of the
extra-layer, be, a4 new parameter associated with the Gauss point method

of toe tracking.
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Chapter 5

VERIFICATION AND APPLICATIONS

5.1 Introducticn

Model verification is a necessary step in the development of any
type of model, in order to establish its validity and accuracy for des-
cribing the phenomena it tries to represent. With numerical models this
verification consists of two stages: verification of the conceptual
model (the mathematical statement consisting of governing equations,
etc.) which is the foundation of the whole approach, and verification
of the numerical techniques used to solve the conceptual model (the
time and space discretizations, iterative procedures, equation solvers,
special algorithms, etc.).

The SWIM code is based on the fundamental assumption that seawater
intrugion can be described by vertically averaged equations resulting
in a layer of freshwater and an underlying layer of seawater, with an
immiscible interface separating them. There are two approximations im-
plied by this approach: a relatively narrow transition zone between
freshwater and seawater, and essentially horizontal flow (the Dupuit
assumption). There are clearly cases in which one or both of these
approximations are violated. For example, the Long Island Magothy
aquifer apparently has significant vertical flow disallowing the use of
the Dupuit approach to model its seawater wedge {Collins and Gelhar,
1971, 1977). The Biscayne aquifer, scuth of Miami, Florida, is well

recognized for having a significant mixing or transition zone, leading
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many researchers to conclude that an immiscible interface approxima-
tion for this aquifer is invalid (Lee and Cheng, 1974; Henry, 1964a;
Segol and Pinder, 1976). However, there is sufficient basis to judge
the immiscible interface/Dupuit approach valid for many applied prob-
lems. It is a major thrust of much of the analysis used world around
to evaluate seawater intrusion (see Chapter 2 and Bear, 1960; Bear and
Dagan, 1963, 1964a, 1964b; Collins and Gelhar, 1971, 1977; Fetter,
1972; Rumer and Harleman, 1963; Hashish et al., 1979; Mualen and Bear,
1974; Pinder and Page, 1976; Shamir and Dagan, 1971; Todd and Huisman,
1959; Van Dam, 1976: Verou, 1978). This report makes the assumption
that the immiscible interface/Dupuit model is appropriate. The next
question concerns how accurate is the SWIM soclution of it?

Chapter 4 presented the SWIM solution of the one-dimensional
gravity segregation problem and described a sensitivity analysis of
that solution to various numerical considerations: time step, space
discretization, space integration, toe tracking algorithm, and its
parameters, iteration parameters (number of time steps between reform-
ing of the effective conductivity matrix), and form of the storage
matrix. Clearly, the proposed numerical solution performed accurately
in the tests documented in that Chapter. However, the computer code has
not yet been tested for seawater intrusion problems involving advancing
or retreating seawater wedges, or the development.of a freshwater lens
over seawater, or the presence of leakage flows to a vertically adjacent
aquifer, or the injection of freshwater into a two-dimensional aquifer,

or the withdrawal of freshwater near a seawater wedge. It is the pur-
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pose of this chapter to present SWIM simulations of each of these
situations, in order to verify for code's accuracy and versatility.
Before this, however, the one dimensional gravity segregation solution
of Chapter 4, obtained using SWIM's indirect method of toe tracking,
is compared to Shamir and Dagan's (1971) numerical mesh regeneration

solution of the same problem,

5.2 Gravitational Segregation: Comparison with the Mesh Regeneration

Solution of Shamir and Dagan (1971)

Assuming a sharp interface and the Dupuit approximation, Shamir
and Dagan (1971) developed a one dimensional model of seawater intrusion
based on finite differences. They used a mesh regeneration scheme with
a fixed number of nodes in the interface zone, between the wedge toe
and the coastline. The time step was variable, and recalculated each
time step, such that the toe movement during that time step was less
than the distance between two consecutive nodes. They determined the
new position of the toe by linearly projecting, or extrapolating, the
interface position, using the values of the interface elevation at
the first two nodes seaward of the toe. Shamir and Dagan (1971) initi-
ally applied their model to the gravitational segregation problem des-
cribed in the previous chapter; then they used it to simulate the c¢lass-
ical one dimensional seawater intrusion problem. The latter is dis-

cussed in Section 5.3.
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The gravitational segregation problem presented by these authors
is identical to that presented in Chapter 4, with the exception of a
slightly later initial condition. They started at £, = 12.28 days
(To = 4.1) instead of t0 = 7.87 days. This corresponds to an initial
toe position of Lt = 20 m instead of Lt = 16 m, and means that the
interface is initiglly less steep and tﬂz toe slower moving than in
the case of Chapter 4. To compare SWIM's solution with Shamir and
Dagan's result, a2 new simulation was performed using the same initial
conditions (1:0 = 12.28 days), grid 1 of Figure 4.18, Ax = 4 m, and all
the other conditions of the basic simulation described in Section 4.3.3.
This new simulation covered a period of 20 days with a time step
At = 1 day; that 1is, 20 time steps were used. In Shamir and Dagan's
simulation the nodal spacing varied in time from 2 to 3.2 m in the
interface zone, and from 3.2 to 2.7 m elsewhere. A total of at least
19 variable time steps were used, assuming that all the time steps uséd
are plotted in their Figure 8.

An important difference between the two simulations is that the
SWIM simulation represented the entire spatial domain of the problem
(from -50mto +50 m), including both the upper and lower toes, while
Shamir and Dagan invoked symmetry and modeled only the half space
(from -50 m to the origin) and the lower toe. As a consequence the
boundary conditions were different in the two simulations; SWIM used a
specified head for both freshwater and seawater at only one end of the
grid, while Shamir and Dagan used a constant specified interface depth

at x = 0 equal to half of the aquifer's thickness, b/2.
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In summary SWIM's simulation used a coarser grid with roughly 1/2
to 3/4 the detail, about the same sized time step, and less constrain-
ing boundary conditions than Shamir and Dagan's (1971) simulation.

Figure 5.1 presents the comparison between the two simulations
for both interface position and toe location. For the interface posi-
tion, Figure 5.la, the results are equivalent. For the toe location,
Figure 5.1b, Shamir and Dagan's solution presents a slightly better
representation at some points, but overall the two solutions are equiv-
alent, especially when SWIM's larger space discretization is accounted
for. Clearly, for this example, the indirect technique of toe tracking

works as well as the direct method of mesh regeneration.

5.3 Classical One-Dimensional Seawater Intrusion Problem

In this section the solution for the classical Dupuit type one-
dimensional seawater intrusion problems in a confined aquifer is pre-
sented. The aquifer is assumed homogeneouys and istropic, with a
constant thickness and a horizontal bottom, and a constant freshwater
discharge to the sea. At time t = tO = () the discharge is changed from
that of the initial equilibrium, and the movement of the seawater wedge
observed. Two situations were modeled:

1. sudden reduction of the freshwater discharge to the sea;

2. sudden increase of the freshwater discharge to the sea.

These were two of the situations modeled by Bear and Dagan (1963, 1964b)
experimentally using a Hele-Shaw model, and also modeled numerically

by Shamir and Dagan (1971) using the mesh regeneration finite differ-
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Figure 5.1 - Gravitational Segregation Problem: Comparison to the Mesh
Regeneration Solution of Shamir and Dagan (1971).

a) Interface Movement; b) Toe Movement.
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ence numerical code mentioned in Section 5.2. The experimental data

reported in these publications was employed in the SWIM simulation.
Figure 5.2 presents a typical cross section for this problem

with the actual dimensions of the Hele-Shaw experiments. The other

relevant parameters reported are:

b 27 cm

-
L]
]

1.0 g/cm3

1.029 g/cm3

-
"

w
]

69 cm/sec

n=1,0

The SWIM simulation employed a first type specified head boundary
condition for the seawater at the "coast" (¢;=0 = 0), a second type
specified flux boundary condition for the freshwater at the inland
extreme (Qi=400 = Q£ =specified), and a third type coastal boundary
condition for the freshwater at the coastline (KL = 69.0 cm/sec).

Two types of grids were used (see Figure 5.3); one using linear ele-~
ments, and the other with the same number of nodes but using quadratic
elements. The results obtained with both grids were identical and the

comments made here are valid for both.

5.3.1 Advancing Seawater Wedge

In this simulation an initial (t < 0) flow per unit width of
Qf = 19.1 cmzlsec was considered. Later (t > 0) this flow was suddenly
cut off, and the advancement of the interface observed. This is Experi-

ment 1 of Bear and Dagan (1963, 1964b). Two types of SWIM simulations

153



z
A7 FIA I A //////// PSS ///////;7)4—7_

:--+
——
f I
Qo !> Freshwater |b=27cm
e
[}
i 5
R

th, 400 ¢cm 14

Figure 5.2 ~ Schematic Representation of the Classical 1-D Seawater Intrusion

Problem

154



(®y96T ‘€96T)
ugde( pur Ivag JO WATQO1d UOTSNIIul 12318Mea§ (-T [EOISSETD 9yl uf pesp Spfis juswaTg 23IFUFd - £°C 2and1g

0 (o0 o8l 002 b2 00g oo, 4
T T T T T H |
.’
& L
¢ by
o] 001 081 002 ob2 o0t Covb

| | I T I | i

100008000000000000 0 MENDE

I P9

155



were run for this experiment: one for the initial steady state condi-
tion, and the other for the transient solution. 1In both runs the co-
efficient for third type boundary condition at the sea was considered
equal to the freshwater permeability, that is KL = kf = 69.0 cm/sec.

For the steady state solution the results of two numerical runs
and the Hele-Shaw data are presented in Figure 5.4 (see the lower right
hand corner). The first numerical result is for Qi = 19.1 cmz/sec
(empty squares on the figure), as reported by Bear and Dagan (1963,
1964b). The SWIM results roughly agree with the Hele-Shaw data,
especially realizing that the Dupuit approximation is not completely
valid for such a slope of the interface. The results of a second simu-
lation with Qi = 24,0 cmZ/sec (stars on the figure) are also presented;
the match is even better; in fact, 1t is almost exact.

That 2 higher flow rate than the one reported by Bear and Dagan
gives a better agreement with the data can be attributed to one of two
sources: model (SWIM) error or experimental error. There is reason to
believe that there may be some experimental error (see the next sec-
tion), but little can be done to check it, and it is unlikely that it
can account for the entire difference between Qi = 24.0 and 19.1 cm2/
sec. Significant SWIM model error can stem from the Dupult approxima-
tion or mis-identification of the third type boundary condition param-
eter at the coastline. Sensitivity analysis of this parameter was not

attempted for this experiment; however, it was done for the retreating

gseavater wedge described in the following section.
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The transient run results are also presented in Figure 5.4. The
general pattern of the SWIM simulation follows the pattern of the
experimental data; however, in the numerical result the toe advances
at a slower rate and the opening to the sea closes at a faater rate.
These two phenomena are interdependent. The opening to the sea closes
faster because the coefficient KL of the sea boundary condition is too
high and the head loss at the coast 1s small. Since this opening to
the sea is small when the seawater advances, the amount of freshwater
that can flow to the sea is constralned, slowing down seawater
intrusion,

A comparison to Shamir and Dagan's (1971) numerical results was
not attempted because they present the interface solution using an
artificial initial condition: the interface location at t = 45 sec.
When they used the actual initial conditions, they observed a lag in the
toe dispalcement between their model solution and the experimental data
for t > 80 sec., probably similar to the lag observed in Figure 5.4.

However, they have not published these results.

5.3.2 Retreating Seawater Wedge

According to Bear and Dagan (1963, 1964b), in their Experiment 3,
the freshwater flow for t < O was Qf = 3.9 cmzlsec, which was increased
to Qi = 18.8 cmzlsec for t > 0. For this data two SWIM simulations were
performed: omne to obtain the initial steady state solution, the other

for the transient solutions. The steady state solution is presented in

Figure 5.5 (the empty squares), and shows an excellent agreement with
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the experimental data, with the exception of the zone with higher
curvature where the Dupuit assumption is not particularly wvalid.

The transient solution is presented in the next figure, Figure
5.6, along with Shamir and Dagan's (1971) mesh regeneration solution
Both numerical solutions show a strong agreement with each other, with
the exception of the zone near the coast. This is due to the fact
that in SWIM a third type coastal boundary condition is used, while
in Shamir and Dagan the interface depth at x = 0 was imposed using the
experimental data, data that was not available in the published litera-
ture. The most striking feature of Figure 5.6 is the complete dis-
agreement between the numerical results {(both models) and the experi-
mental data. This difference deserves a closer look.

The volume (volume per unit width = area) between the Hele-Shaw
interface at t = 0 and at t = 20 sec is approxliatemly 480 cmz. Assumimg
that for 0 < t < 20 sec the freshwater flow to the sea is comstant and
equal to the 1initial wvalue Q: = 3.9 cm?/sec (an optimistic assumption,
because this flow should increase with t), the net increase of the

f f

freshwater flow, 4Q, = Q. =20 sec -Qi[t = 18.1 - 3.9 = 14.2 cmzlsec,
* (o]

should account for the area swept by the interface in the first 20 sec.

However,

AQi x 20 gsec = max.vol. added = 14.2 cmzlsec x 20 gec =

= 284 cmz < 480 cm2 = yol. displaced

which means that the flow measured by Bear and Dagan of 18.1 cmzlsec

could not possibly produce the interface displacement observed. Re-
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arranging the calculations leads to an estimate of the average fresh-

water influx during the 20 second period:

Q: 3_5%%- + 3.9 = 27.9 cmzlsec

Since the flow to the sea was assumed constant, and equal to the
initial value, and since in reality it increases, it was decided to
assume a value of éi = 30 cmzlsec as appropriate for this experiment,
and to compare SWIM's results for this case with the experimental data.
This comparison is shown in Figure 5.5, the black circles represent
the SWIM simulation. Now the agreement between the numerical and ex-
perimental results 18 much better and again the differences are near
the coastal opening tec the sea. To correct this last problem another
simulation was performed using a new parameter for the third type
coastal boundary conditiom, Ké = Kflz, that is half of the value usged
in the previcus runs. The results are slightly improved at the nodes
near the coast, as expected, and are gshown in Figure 5.5 as the empty
circles., The overall agreement between this last simulation and the
experimental data is excellent, especially for t < 75 sec. Some differ-
ences appear for later times that indicate that the freshwater inflow
in the experiment was actually time dependent. All of these findings
confirm the initial hypothesis, of errors in the collection nf experi-
mental data.

Dagan (personal communication, 1979) has indicated that the measure-
ment of the flows was relatively crude, and that the different flow

rates were obtained by opening and closing values to constant head -
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tanks positioned at different levels. This alone would indicate ex-
perimencal difficulty in controlling a constant freshwater inflow.

He also indicated that it was very difficult to maintain a constant
interspace width between the walls of the Hele~Shaw model, leadlng to
errors in calculating the model permeability, specific discharge, and

discharge per unit width, Qi or Q:.

Through these simulations SWIM has proved that it can handle both
advancing and retreating wedges. The third type coastal boundary
condition has worked remarkably well, although it requires application
specific calibration. For the drastic changes in the opening to the
sea observed in these experiments, a scheme with a nonlinear third type
boundary condition at the coast might be preferable. Such a non-

linearity would include a freshwater head dependent coefficient,

|} L | f
K, = KL (40

3.4 Development of a Lens of Freshwater Over Seawater

SWIM was designed to handle situations in which the interface
between freshwater and seawater intersects the bottom of the aquifer
in which a "toe" exists, However, It can also be used to simulate
situations in which freshwater floats as a lens over the seawater, so
that thefe is no "toe". To judge the model performance in this situa-
tion, as well as to infer the influence of the position of the aquifer
bottom on the shape of the interface,the transient development of a

freshwater lens was simulated. Approximate analytical solutions have

163



been proposed by Hantush (1968) for thick aquifers near the coast or
under islands. From these solutions, the example of a coastal aquifer,
with finite width L, receiving uniform recharge from an infinitely long
strip parallel to the coast, was selected (see Figure 5.7). The depth

of the interface according to Hantush (1968) is:

Y
]

2¢[2(b-a)x-f(x,t)] for 0 < x < a

2c[2(b-a)x—(x—a)2-f(x,t)] for a<x <b {(5.1)

2c[(b2—32)-f(x,t)] for b < x <L

in which
2\ ™
f(x,t) 2 (ég.l..‘_)nz R gin _(.211"'_1&
3 n 2L
" =)
2 —
Fl_n - — 3 [cos LEE%%2!E -Cos ngg%lﬂﬂ] exp{-[igggll!] 2%}
{2ix+1) L
C = 3
286(i+6)K
f -
v = K &z
n
s f
§ « LZL
£
Y
in which:

| )] = absolute value*;

*
The absolute value of f(x,t) is not included in Hantush (1968), but for
certaln cases singularities appear if the absolute value is not used.
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N = recharge, or accretion, rate per unit of area;

Kf = permeability;
n = effective porosity;
T = average depth of the interface = z(t).

a,b, L and x are defined in Figure 5.7, The discharge per unit width

of the sea coast in given by:

Qi_o = —N[(b—a) + (%) I (2n+l) Rn] (5.2)

n /=0
In his derivation,Hantush assumed that the Dupuit approximation
is valid, used the Gyben-Herzberg hypothesis, thus neglecting flow
in the seawater phase, and employed a second type linearization of the
resulting equation (see Bear, 1972, for more on linearizations of the
Dupuit type equations).
For the SWIM simulations of this situstion the following param-

eters were selected:

L =100. m
8= 45. m

b= 55.m

=
]

0.2 wm/day

~
]
-
]

100. m/day
K' = Kf
Yy = 1.0

1.025

-t
[ ]

The finite element grid used in this problem employs linear &4-node
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elements with a length of 5 m, similar to grid 1 of Figure 4.18. At
the left-hand boundary a third type freshwater coastal boundary condi-

tion was imposed and first type seawater boundary condition ¢s 0.

x=0
A "no flow'" condition was imposed on the right hand boundary. An
arbitrary depth of the aquifer of 20 m was selected for the simula-~
tions; the effect of changing this depth will be examined later. The
initial condition for the interface and phreatic surface was specified
as a horizontal plane with elevation equal to the mean sea level.

In his development Hantush assumed a static seawater level
(¢S = 0, all x). This was simulated in SWIM by selecting a extremely
large hydraulic conductivity for the seawater, Ks/Kf = 104.

Figure 5.8a presents the results from the SWIM simulation, solid
line, and the analytical solution (Eq. 5.1}, dashed line. At early
times the Hantush solution does not conserve mass, as observed by com-
paring the sum of the volume of freshwater lens plus the outflow to
the sea, to the total recahrged volume, V = N(b-a)t. Later, for
t < 100 days, the Hantush solution is conservative. The explanation
for this minor mass conservation problem lies in the way the averaged
interface depth (z) 1s calculated and used in Eq. 5.1. The SWIM solu-
tion is conservative at all times. The final steady state solution
for both cases is identical, as one should expect, because the Ghyben-
Herzberg assumption 1is applicable to both cases, and the linearizationm
for the amalytical solution 1s no longer necessary. The principal

explanation for the observed difference between solutions during the

transient can be attributed to these added approximations of the
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Figure 5.8 - Interface Movement in the Development of a Freshwater Lens
over Seawater: a) Comparison Between Hantush (1968) and SWIM;
b) Effect of the Ghyben-Herzberg Assumption.
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analytical solution: Ghyben-Herzberg and the linearization. Figure
5.9a shows the drawdown beneath the midpoint of the recharge area; as
one can see both solutions are similar. The ocutflow per unit of width
to the sea computed by SWIM and by using Eq. 5.2 is compared in Figure
5.10a. The outflow computed by Hantush's method is slightly smaller;

consistent with its faster lens development.

To infer thé influence of the Ghyben-Herzberg assumption a simula-
tion assuming K® = Kf was performed. The results are compared with
the previous simulation, in which K°/KY = 10%, of Figure 5.8b. The
final steady state solutions are identical. The transient interface
that accounts for seawater dynamics moves slower than when the seawater
is assumed static {see Figure 5.9b), although the freshwater discharge
to the sea does not change much (see Figure 5,10b). 1In fact, during
the first 4) to 50 days of lens development there 1s almost no differ-
ence in the solution. The lens is less than one meter thick, and
when this i3 compared to the overall aquifer thickness of 20 m, the
Ghyben-Herzberg approximation is reasonable. Later, however, the lens
thickness grows and the approximation becomes less valid. Also note,
for this example that the additional error of the linearization is as
large as, or larger than, the error due to the Ghyben-Herzberg approxi-

mation.
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The appropriateness of the Ghyben-Herzberg approximation is re-
lated to the aquifer depth. In the solutions presented thus far the
maximum depth of the interface has been less than 3 m, which is much
smaller than the total depth of the aquifer, 20 m. 1In these examples,
if one can consider the aquifer to be a thick formation, then the
Ghyben-Herzberg should apply. In the next set of simulations the sea-
water was assumed dynamic (KS==Kf), while the elevation of the bottom
of the aquifer was varied from depths of 20 m to 4 m, and to 2 meters.
The interface positions for these three simulations are presented in
Figure 5.11, the drawdown at the middle part of the recharge zone is
shown in Figure 5.9c¢ and the unit width freshwater discharge to the sea
is given in Figure 5,10c,

The influence of the bottom is felt in two important ways: a re-
duction of the rate of drawdown of the interface, and an increase of
the freshwater discharge to the sea. These two phenomena are related
and are due to the resistance the seawater encounters when it attempts
to flow back from the aquifer to the sea, An Interesting note is that
for the 2 m depth no seawater is trapped in the aquifer by the fresh-
water lens, when it hits the bottom. As expected the steady state
shape of the Interface is the same for all the three cases.

This example clearly demonstrates that in many cases the Ghyben-
Herzberg assumption of a Infinitely deep aquifer, to avoid the problem
of modeling the sea water regime, is not always satisfactory, unless
one is seeking a steady state solution. Also, the Ghyben-Herzberg

approximation is equivalent to either, increasing Ks/Kf to a large
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a)

b)

c)

Figure 5.11 - Interface Movement in the Development of a Freshwater Lens
over Seawater. Influence of the Bottom Elevation.

a) Depth of the Bottom d=20m ; b) d=4 m : c) d=2 m .
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number, or increasing the aquifer thickness; both result in essentially

zero resistance to flow in the seawater regime,

As a final test using this example, a sensitivity analysis was
performed for the outflow coefficient of the freshwater coastal bound-
ary condition. BSo far, a coefficient of Ké = Kf has been used:; new

f. Kffloo were performed. For

simulations assuming Ké = Kfllﬂ and K'
Ké = Kfllo the results were identical to the previous simulation with
only a slight change at the coastal freshwater opening, For Ké = Kf/100
there was a significant effect for t > 100 days, especially near the
coast, and for the final steady state solution, as shown in Figure 5.12.
The creation of the almost uniformly thick lens apparent in the figure
is due to the great resistance the freshwater flow across the coastal
"third-type barrier". In Figure 5.9d, the drawdown at the middle

point of the recharge is plotted. It shows a divergence from the basic
solution only for t > 200 days, after the interface reaches the coast.
In Figure 5.104 the unit width freshwater discharge to the sea shows

a deceleration of the discharge, because the freshwater is being used

to create this enormous lens. Clearly, this very small value of

Ké = Kf/lOO is unrealistic, and does not account for vertical flow/
nonDupuit effects cbserved near the coast. Ké = Kf seems to perform
adequately.

These numerical experiments demonstrate the capability of SWIM to

model freshwater lens situations. They further confirm the use of the
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Figure 5.12 - Interface Movement in the Development of a Freshwater Lens
over Seawater. Influence of the Coastal Boundary Condition
Coefficient
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third-type freshwater coastal boundary condition, and indicate that
the solution is not too sensitive to its parameter, for a reasonable
range of parameter values.

Comparison of the simulation results to Hantush's (1968) approxi-
mate solution, clearly points out the danger of using the Ghyben-
Herzberg approximation and equation linearizatioms for this dynamic

problem.

5.5 Seawater Intrusion in a Leaky Coastal Aquifer

In the previous simulations the leaky terms were used to represent
the coastal boundary. 1In this test leakage terms of the governing
equation are used to represent a leaky layer at the top of the aquifer.
Consider the cross-sectional view of the leaky coastal aquifer shown
in Figure 5.13. Freshwater is recharged at the left hand side, and
from the upper aquifer (¢f < ¢'f). Later, because of the decreasing
value of ¢'f near the coast, the freshwater leaks back to the upper
aquifer (¢f > ¢'f). This problem has been solved analytically for the
1-D steady state case, by Hashish et al. (1979) using numerical inte-

gration on the following partial differential equation (Verou, 1978):

2 .
Y v yE ot
3 -2 i "= N d - A ¢ . (5.3)
dx b'K"  b'K Y
where:
= aquifer thickness
bf = freshwater thickness

b' = semi-pervious layer thickness
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d = elevation of bottom of semi-pervious layer below MSL
K° = aquifer permeability
K' = semi-pervious layer permeability
Ay =y -y
¢" - ¢'f(x) = freshwater piezometric head above the semi-

pervious layer

The parameters selected for the SWIM simulation of this situation
are identical to those used by Hashish et al. (1979) in a simple example

they presented:

b = 200 m
b' = 55m
= 40 m

Kf = 155 m/day

K'f = 0.03 m/day
Tf = 1.0 g/cm3
Ys = 1.025 glcm3
¢'f(x) = 10"4 x, a function of space

2 = 120 Km = length of the aquifer

For boundary conditions the saltwater head at x =  was set to

= ()} and the freshwater head at x = £ was assumed to be

zero (¢s|x_0

10.0 m (@flx_2 = 10.0). A no flow condition was applied elsewhere,
except that if the freshwater zone were to reach the coastline, a third-
type boundary was specified, A linear grid with 10 km spacing was used

in SWIM.
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The results of the simulation and the numerically integrated
analytical solution are presented in Figure 5.14, They cannot be
distinguished at the scale of the graph. Table 5.1 gives the toe

location for both seclutions; again the results are almost equivalent.

Table 5.1

Toe Location Comparison for the Leaky Coastal Aquifer

Toe Location {(m) Length
of the Interface
Upper Lower (m)
Hashish et al. (1979) 8.86 59.47 50.61
SWIM 9.16 59.18 50.02

With this simulation, SWIM's ability to model leaky aquifers was
verified. It is curious, however, that che interface solution of the
particular problem should turn out to be an almost straight line.
Linearized solutions for this or similar problems have more "shape"

to them (Verou, 1978; Hashish et al., 1979).

3.6 Injection of Freshwater into a Saline Aquifer

The injection of a fluid into an aquifer saturated with another
fluid has become a problem of some interest in groundwater hydrology.
This section analyzes the case of radial flow from a fully penetrating
well in a horizontal confined aquifer with constant thickness. The
injected fluid has a different density than the ambient fluid. Thus,

this problem is similar in some ways to the one-dimensional gravitation-
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Figure 5.14 — Steady State Position of the Interface of the Seawater Intrusion
in a Leaky Coastal Aquifer
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al segregation problem of Chapter 4., However, in this case the inter-
face does not remain linear in shape and, furthermore, it is radially
displaced by the injected fluid. Gelhar, Wilson and Miller (1972)
(see also Gelhar et al.,1972a) studied this problem and developed an
analytical expression for the interface shape, which is used herein.
Figure 5.15 illustrates the process to be modeled. In a hori-
zontal confined aquifer of constant thickness b the seawater, the
heavier fluid, is displaced by freshwater, the lighter fluid. The
analytical solution was derived in terms of radial distance (r) and

volumetric coordinates (¥):

2
8 € e U
b _n_1 Loy caudy - g 31 y2
"% 2 (1 +U) + 16 (1 -3u%) 113 (1 A U™y + ... {(5.4)
where:

n = b® = interface elevation above the aquifer bottom [L]

b = aquifer thickness [L]

5
erv*

- 3
v= ¥y, [L7]
¥= gsnb rz [L3]

3

¥, = Qt [L7]

n = effective porosity
r = radial distance [L]
Q = recharge rate [L3!T]
t = time [T]

£, = fﬁ/Ar = small perturbation parameter
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Figure 5.15 - Schematic Representation of Radial Freshwater Injection into a
Saline Aquifer
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= 2 2
Ar 2mmb [L/1]
p= % &y 2
n Yf

K= Kf = permeability [L/T]

This analytical solution assumes an initially vertical interface. How-
ever, this would require a very detailed grid, for the numerical
simulation, and a corresponding very small time step to capture the
earlier displacement of the interface. Since this earlier displacement
is of little interest for present purposes, an initial condition at
t0 = 10 days was calculated using Eq. 5.4.

For the numerical simulation the following parameters and boundary

conditions were used:

b= 1.0m

k' = 100 n/day
n= 0,2

Yy = 1.0 gfc-3

¥y = 1.025 glcm3

er = 1.859 m3/day at x = 0.0 m (xl= x2=0.0 m)*

At = 0.5 days (At = 2.5 days)*

Ax = 1.0 m (Axl- &x, = 2.0 m)*

¢° = 2.0mat x =240mn (x; = 24 m, 0<x, <2 mand
X, = 24 m, 0 2% < 24 my*

to = 10 days

*
The values inside parenthesis were used in the 2-D simulation des-
cribed below,

183



Two simulations using linear elements were performed using SWIM.
In the first simulation a 1-D radial flow grid shown in Figure 5.16 was
employed; the results obtained are plotted in Figure 5.17. The agree-
ment between the analytical and numerical solution is very good, al-
though the numerical simulation shows a small acceleration of the upper
toe. This may be due to the influence of the boundary conditions or
because of the lack of higher order terms in the analytical solutiom.

Thus far SWIM has only been tested against essentially 1-D prob-
lems, whether linear or radial in geometry. This radial flow applica-
tlon can be looked upon as a two-dimensional problem, if a non-symmetric
grid is emploved, such as the one shown in Figure 5.18. This grid does
not take advantage of the variable grid feature of the finite element
method to provide more detail near the well. Thus it is also interest-
ing to see how well the model performs with such an adverse discretizg—
tion., The simulation results are given in Figure 5.19, with interface
levels as computed along the two sides AB and AC, and along the diagonal
AD, of the grid. The side based solutions show a small assymetry that
may be due to the way the nodes were numbered combined with the colummn
equation solver and the closeness of the boundaries. These solutions
show the same acceleration on the upper toe noticed for the radial grid.
The solution along the diagonal demonstrates a much better agreement
with the theory, for the entire interface including the upper toe. The
upper toe at t = 50 days along the diagonal of the grid is furfher from
the sides of the grid at which the first type boundary conditions are

applied. TIt shows no acceleration. This reinforces the earlier hypothe-
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Figure 5.18 - 2-D Finite Element Grid Used in the Injection of Freshwater
into a Saline Aquifer Problem
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sis that attributed the upper toe acceleration to the proximity of the
boundaries.

In this example, SWIM has shown that it can accurately simulate
two dimenslon interfacial phenomena with moving fronts (the upper and
lower toes). Even when a relatively sparse grid with no particular
orientation to the flow field is employed, the simulation predictions

are satisfactory.

5.7 Seawater Intrusion Toward a Coastal Pumping Well

Coastal pumping wells are used for water supply by pumping fresh-
water, and for control of seawater intrusion, by pumping freshwater
and/or seawater, This situation can also be modeled using SWIM. In
this section, a single pumping well withdrawing from the freshwater
layer is considered, and the position of the tcoe is determined for
transient and steady state conditions.

In Figure 5.20, z schematlic representation of the situation modeled
is shown. Strack (1976) derived a single-potential steady state solu-
tion for the piezometric freshwater head in this type of coastal aquifer

with a pumping well, with (Girinskii) potential ¢ given by:

1/2

2
£ Qw (xl - xw) +x
$=q + > 1n

(5.5)

Mk B

2
(x1 + xw) + x
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Figure 5.20 ~ Schematic Representation of Seawater Intrusion Toward a Coastal

Pumping Well. a) Plan View; b) Cross Section by the Well.
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where:
Q = ambient flow per unit width in the negative x direction
2
[(L°/T]
3
Q, = pumping rate [L7/T]
x = distance between the coast line and the well (L]

X;»X, = Cartesian coordinates [L] .

¢ takes on the following values:

above the interface:

1

¢ = 2

8 ¢
K -I-; (¢ -d) (5.6)

inland of the toe:

o=treH2-LgL g (5.7)
) 2% % .

where:

K= Kf = permeability in the freshwater zone

d = aquifer depth below the MSL

The following parameter values were used in the SWIM simulations:

2
R 1.0 m"/day (at 3

x = 600.0m

< 2000 m)

L=
[}

- 2000 m, 0 < x,
K' = 70.0 m/day

d= 20.0m

Yf = 1.0 slcn3

y* = 1.025 g/cm’
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At the coastline a first type saltwater (¢s = 0) and third type fresﬁ-
water coastal boundary condtions were used (K;‘ = Kf = K). Along the
inland boundary a second type specified freshwater flux Qi = -Q§ was
used. A "no flow" boundary of symmetry was used for both layers along
the Xy axis (x2 =0, 0« X < 2000 m). A no flow boundary was alsc used
on the parallel boundary (x2 = 2000 m, O < Xy < 2000 m), ét a distance
that was hopefully far enough from the well so as mot to affect the
solution employed. Two freshwater pumping rates were tested,

Q, = 300 malday and Qw = 400 mslday. The finite element grid is shown
in Figure 5.21. It has more detail near the well in order to capture

locally sharp gradients of piezometric head. The grid has 59 elements

and 121 nodes, and only covers half of the space due to the symmetry of

the problem. The solution of the transient problem required a lumped
storage matrix in order to avoild a non~positive definite effective

conductivity matrix (see Appendix B).

The first simulation performed assumed Qw = 0 in order to determine
the Iinitial position of the interface, prior to pumping. Then at
t=t = 0 pumping started at a rate of Qw = 300 malday and the transient
simulation was performed until a new steady state was reached., The re-
sulting toe positions for the steady states and at certain times during
the intervening transient are shown in Figure 5.22 along with the steady
state analytical solutions. There is no analytical transient solution with
which to compare (unless the Ghyben-Herzberg approximation is invoked).
The agreement between the analytical and numerical sfeady state solu-

tions is very good. The small discrepancy for x, > 1000 m is due to

2

the presence of the boundary at X, = 2000 m. That is, the numerical

solution agrees perfectly with the amalytical solution when
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pumping wells are placed parallel to the coast, and 4000 m apart.
The first orcer approximation of this is the use of one image pumping

well 2000 m ¢n the other side of the boundary at x, = 2000 m: the

2
effect is shown as the dashed line in Figure 5.22. Figure 5.23
presents the analytical and SWIM steady state solutions for the inter-
face profile at different values of X9 and the piezometric head for
X, = 0 m. Again, excellent agreement was obtained. The only difference
between these solutions is related to the value of the opening to the
sea, and corrresponding plezometric heads. The opening has a finite
value in the SWIM solution with its third type freshwater coastal
boundary condition, and an unrealistic zero value for the analytical
solution.

In another set of simulations the pumping rate was increased to
Qw = 400 m3/day. The steady state solution for this case is presented
in Figures 5.24, for the toe location, and 5.25, for the interface and
water table profiles. With this new pumping rate the toe advances and
some seawater upconing appears under the well. The comments made for
the previous test with Qw = 300 m3/day ate also valid here, The insert
of Figure 5.24 shows a more detailed cowparison of toe locations for
the analytical and SWIM solutions in the upconing area. In this
example the toe location for SWIM was computed using the interpelation
functions, and the values of the interface elevation at the nodes just
seaward and inland of the toe. For the nodes inland of the toe the
interface elevation was calculated using computed freshwater and sea-

water piezometric heads, and Eq. 3.3. The agreement between numerical
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and analytical solutions i1s excellent for the type of spatiasl discretiza-

tion used.

SWIM shows in these tests that 1t can be used as a powerful tool to
model the effects of pumping activities on seawater intrusion, that it
can be used to aid in the design of seawater intrusion barriers
employing pumping and/or recharge wells, and that it can simulate sea-

water upconing toward freshwater pumping wells,

5.8 Summary

In this chapter SWIM was applied to several situations encountered
in groundwater hydrology involving two fluids separated by a moving
immiscible interface. SWIM solutions were compared with analytical
and experimental results, and other numerical simulations., The situa-
tions examined were: classical one dimensional seawater intrusion,
with both adyancing and retreating seawater wedges; development of a
freshwater lens over seawater; seawater intrusion in a leaky coastal
aquifer; injection of freshwater into a saline aquifer; and seawater
intrusion toward a coastal pumping well. These applications demon-
strate SWIM's applicability to 1-D and 2-D, steady state or transient
flow situations with a variety of boundary conditions, sources and
sinks, etc.

Several other issues were investigated, such as the validity of
the Ghyben-Herzberg assumption for the transient analysis of the
development of a freshwater lens, and the capabillity of SWIM to repre-

sent interface upconing beneath a pumping well.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Background

Seawater Intrusion along coastlines and under offshore islands
is a classical result of groundwater development. On a regional scale
vertical effects, such as mixing along the interface between freshwater
and seawater, and vertical flow are often negligible, and a two-layer
horizontal flow model of the regional flow system is appropriate.
Freshwater is the upper layer, seawater is the lower layer, and an
immiscible interface between the two is assumed. The Dupuit assump~
tion is used to average vertically all the quantities and parameters.
When an 1mmiscible interface 1s assumed, two situations can be en-
countered: the interface intersects the bottom of the aquifer defin-
ing a toe; or the interface never intersects the bottom of the aquifer,
that is, the freshwater body has the shape of a lens floating over the
seawater. This report described a numerical model that simulates

these situations accurately and effectively.

6.2 Previous Work

The immiscible interface approach to seawater intrusion modeling
is much more commonly used than the alternative approach which accounts
for dispersion on the mixing zone, mainly because it is easler to im-
plement and calibrate. Existing immiscible interface models have

followed one of two approaches:

201



~the aquifer is very thick, therefore a toe never occurs:
-mesh regeneration is used to track the toe (it's accurate but
very expensive to run and besides only a simple 1-D model of
this type was found).

The present report introduces a third approach.

6.3 Summary

A finite element model named SWIM, an acronym for Sea Water
Intrusion Model, has been developed to model regional flow in coastal
aquifers and under offshore islands. A Galerkin finite element state-
ment was used for space discretization, using mixed quadrilateral,
isoparametric elements with from 4 to 8 nodes. The aquifer can be
homogeneous or non-homogeneous, isotropic or anisotropic, leaky or
non-leaky, phreatic or confined. Time varying boundary conditions
can also be modeled, and steady state and transient solutions are
possible.

In the development of SWIM a special emphasis was put on the
algorithm used to track the toe without mesh regeneration. This al-
gorithm uses the Gauss quadrature points and a mon-linear variation
of the permeability across the element to track the toe. The lower
toe as well as the upper toe are tracked in this way. Cases in which
a toe does not exist can also be modeled by SWIM,

A sensitivity analysis of SWIM, and especially its toe tracking
algorithm, was performed. The effects of space discretization, time

step, toe tracking algorithm parameters, number of Gauss points,
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number of time steps between updating of effective conductivity
matrix, and lumped vs. consistent storage matrix were examined.

The 1-D gravitational segregation problem in porous media was used as
the basis of this analysis.

To judge the versatility and applicability of SWIM several addi-
tional simulations were performed. They include classical 1-D sea-
water Intrusion,development of a freshwater lens over seawater, sea-
water intrusion in a leaky coastal aquifer, injection of freshwater
into a saline aquifer, and seawater intrusion toward a coastal well.
The simulations also verified several additional features not examined

in the 1-D gravitational segregation problem.

6.4 Conclusions

SWIM has demonstrated that it is an accurate and reasonably
efficient model of seawater intrusion in aquifers, whether freshwater
occurs as a lens over the seawater, or as a layer over a finite length
seawater wedge, In particular:

-The model accurately represents aquifer situations in which
a seawater toe occurs,

-The toe tracking algorithm has shown a dependence on the time
step and space discretization, which affects the accurate repre-
sentation of the toe movement. A third factor, the extra-layer
thickness, also plays a role in this relationship.

-Local effects, such as interface upconing, are also represented
reasonably well by SWIM, especially considering that it is a

regional flow model.
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-The third type boundary condition at thecoastline has performed
adequately, in its effort to represent or simulate the non- Dupuit
effects occuring in that region.

~For the freshwater lens problem, the SWIM simulation confirmed
that the Ghyben-Herzberg approximation is not usually wvalid for
transient problems. Furthermore, the linearizations often used
to develop an analytical solution of the transient equations may

contribute additional error.

6.5 Future Research

Three features should be implemented in order to make the SWIM code
more generally applicable to groundwater problems:

-A time varying storage matrix;

-A time varying third type boundary condition coefficient at the

coastline.

-A new third type boundary at pumping wells drawing water from

both layers.
The first of these features will make SWIM capable of simulating
aquifers changing status from confined to phreatic, or vice-versa.
The second of these features may permit a better approximation of the
non—-Dupuit effects near the coastline during tranaient flow. The
third of these features, in a crude way, will allow the modél to
simulate the effects of a pumping well that once pumped freshwater
only, but later, due to interface upconing, draws fluids from both

seawvater and freshwater layers.
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1t can be shown that two phase flow models (say, petroleum
reservoir models) can be adapted without revision to the study of
gseawater intrusion for a lens situation. They can alsoc be used to
simulate the toe situation of seawater intrusion by inclusicn of a
"toe" or front tracking algorithm, of the type described here. A sub-
routine can be inserted in finite element two phase flow models to
check on the presence of a front inside each element. Elements con—
taining a front can be numerically integrated with non-linear perm-
eability and a greater density of Gauss points to evaluate the element-—
al matrix. Implementing this method should be relatively simple for
models that already use Gauss quadrature to integrate over the element
area, It would not be very difficult to adopt compact formulas, such
as those used in linear triangular elements, to handle the elements
containing a front when other schemes of integration are used.

The "toe tracking” algorithm, in onme form or another, can also be
adapted to other moving boundary problems, particularly the Stefan
problem where a few somewhat similar schemes already exist (see Sec-
tion 2.3.2). Among these is the problem of a change in aquifer status
from confined to phreatic, or vice-versa, in which the moving "boundary"
separates the two aquifer zones. Current techniques for modeling this
groundwater situation are inadequate (see Wilson, Townley and S4 da

Costa, 1979).
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Appendix_A
DERIVATION OF THE GOVERNING EQUATIONS

FOR SEAWATER INTRUSION IN AQUIFERS

A.1l Introduction

The objective of this Appendix 1s the derivation of the general

governing equations for groundwater flow in coastal or island aquifers

experiencing seawater intrusion, The two equations obtained, one for the

freshwater pnase, the other for the seawater phase, will be used in
the development of the two dimensional numerical model using the finite
element method, SWIM.

The general situation Involves freshwater flowing toward the sea
due to a gradient, with the denser seawater forming a wedge underneath.
Figure A-l1 illustrates some of these typical situations. It is impor-
tant to realize that these figures are highly distorted in the vertical
scale.

Freshwater and seawater are miscible fluids, and a transition zone
exists between them, in which the salt concentration and thus the den-
sity of water increases toward the sea. This zone is created by the
flow field and the effects of hydrodynamic dispersion. In many circum-
stances, its width is small when compared with the aquifer thickness.
To neglect the transition zone is equivalent to assuming that an immis-
cible interface separates the reglons occupied by the two fluids. This
type of assumption is acceptable 1in many cases of practical interest,

and greatly simplifies the solution of the problem.
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A.2 Derivation of the Governing Equations

A.2.1 Confined Aquifers

In the derivation of the governing equations, Darcy's Law is

assumed valid:

a=-kv¢

where q = specific discharge vector with components

[ J— —ai
qx Kx ax
]
:—K—t.
iy y 9y
@ =k 2
z z oz

=
It

permeability tensor (for sake of simplicity in the derivation

onlv--principal directions are assumed)
¢ = piezometric head

V = grad.

The underline _ represents a vector and _ a matrix (tensor) quantity.
For a confined aquifer the general conservation of mass equation

in three dimensions is:

3o (o0) = divipq)

or in Cartesian coordinates and using Darcy's Law as given above the

expression becomes (Bear, 1972):
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3 B¢y . 3 8%y L 8 90y o 3
ax (Kx Bx) + Iy (Ky By) + 3z (Kz Bz) 33'5% (A.1)

where S¢ nB + a)y or [nB + (l-nja]y = gpecific storage,

n = effective porosity,

f = water compressibility
a = goil vertical compressibility
Y = water specific weight.

The choice of the form of specific storage depends on the derivation
taken (Bear. 1979).

Since a two-dimensional equation in the horizontal plane is sought,
Eq. A.]l must be integrated in the vertical direction, z, between the con-

fining boundaries, zl(x,y).and zz(x,y). Using Liebnitz' rule:

A(X) A(x)
%[I f(x,w)dw] = I [J—'—lgi 2,9 ]dw + £(x,A) ___g:(x) -f(x,B) —-—gi(x)
B(x) B{x)

: *
and neglecting the variation of S8 with z , the result is:

0z

z z
L (g 2¢ ¢l g 24 x 32 1
% ({ Ky 3x 92 + 55 (Iz Ky 3y 92) Ky o 5%
o
9z iz dz
x 2| i, o8 2, 2 2, . 2
y 3y z oy X 9X z Ix y 3y z oy z 3z 2
1 2 1
2 3z 9z
K ¢ = 2.1 - 1 _2 .
Kz oz 2 Ss ot ( ¢dz) Ss ¢ at +ss ¢ at (4.2)
: 2 2 %1 %2

*If there 18 a significant variation of S8 with z, an averaged value can
be used, or the aquifer system can be di%ided into several layers such
that a constant SS within each layer can be assumed without introducing
significant error. One can also exactly account for this variation by
introducing additional terms in the final equation, which generally can
be neglected.
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Eq. A.2 can be gimplified using the following notation:

[ = At
q [qx where q q" + q,
1y

¢' = grad where v = ¢! +_'f!___ 2
X, ¥ dz —z

iz = 0= direction cosine of the vertical direction.
0
1

Introducing these definitions in Eq. A.2 the result is:

Tz gl 4,

zZy Z Zy

5
9! J 1! dz _ﬂtl
z z

z z az
-5 (J ¢dz) -S_ ¢| 1 +s_ ¢| ——3
2, 1 %

Adding the terms representing the fluxes at the confining boundaries

leads to:

z
A I 1 q' dz -»_qi . V(z-zl) + gl . V(z-zz)
2, z z
z iz oz
-5 2 (I ¢ dt) -S_ ¢‘ 1 +S ¢|
%2 1 z

| -]

(A.3)

|

The definition of flow normal to a surface s is given by 9,79 B,

where n = Vs is the unit vector normal to the surface. The equations

defining the confining boundaries are:
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top boundary: g, = z -z, = (;

1 1

bottom boundary: 8, =z -2, = {,

2 2

If these boundaries are considered impervious:

-_gl . V(z-zl) =

= .« V{z=-2,) = 0
.9|z2 .

then Eq.Ad1s simplified:

z z oz 9z
1 3 1 1 2
1 ' - —_ - . — . —_—
v J q'dz Ss at I ¢dz) ss ¢ it +ss ¢ it
z : z z z
2 1
In Carteslan notation this equation becomes:
z z ' z
a 1 3 3 1 3¢ - 3 1
ax (L Ky ax 920 5y (L Ky 3y? 920 = S5 5% (L ¢dz)
2 2 2
az 2z
1 2 '
- . —_— - —_—
ss ¢|zl at Ss ¢|z2 at (A-4)

Using Liebnitz' rule again to carry out the integration on the left
hand side of Eq. A.4, and neglecting variations of Kx and 1(y with z. (the
same assumption made for SB in obtaining Eq. A.2) gives

le '} 4

3 d | 3 2
35 K ——([ ¢dz) ] + 3;[Kx(-¢z “5;-+¢z rd i

2 1 2
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Z az oz
) 3 1 ? 1 2
+ 2. g = d + 2% K (~¢|] - —+ . —£
y 'y 3y (Jz $dz) 3y Syt ¢|z 9y ¢[z 3y )
2 2
z 9z az
- o - 1 L2
=5 o (L ¢dz) -S_ ¢| +5 ¢| TS
2 % Z9

Defining average plezometric head $ and aquifer thickness b,

51
I ¢dz where b = z, -z,
%2

<1
o=

and carrying out the derivatives of b$ , one arrives at:

3(z_-z,) oz 3z
8 _1 1 2 1 _2
Ix (Kxb Bx {K (¢ 3x ¢| x ¢l ax )]+
‘1 2
a(z,~2,) dz 3z
(Kb—i)'l' {K (1’“——'};-3“*‘#' jfyl*' ¢| ‘a}—z‘)]=
z z
1 2
e o(z.-z,) 3z 3z
- 8¢ g —L 27 4 .1 L2
SgP 3t ¥ Ss(¢ ot ¢|z T Ri’lz It (A.3)
1 2

In confined aquifers one can often assume essentially horizontal
flow, which is equivalent to assuming that the equipotential lines are

vertical. Therefore, along a vertical line, ¢ = ¢lz = ¢| 2 ¢,

and Eq. A.5 reduces to:

3¢ b2 - ¢
3 (Kxb ax) + = ( y ay) S.b ¢ (A.6)

which is the governing equation for a confined flow between two impervi-

ous layers.
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The assumption of essentially horizontal flow in an aquifer with sea—
water intrusion can introduce appreciable error, especially near the zone
of the freshwater opening to the sea, where the flow is no longer hori-
zontal and the equipotentials are no longer vertical. However, the
simplifications introduced by such as assumption justify its adoption for
many field problems. A detailed analysis of the flow field in the zomne
near the coast or in areas with significant vertical recharge should be
performed in each particular case, in order to verify the adequacy of
this approximate approach.

At this point assume that the lower confining layer represents the
freshwater/seawater interface £E(x,y,2,t) = z - £ = 0, where r is the
interface elevation (see Fig. A.2). The kinematic boundary condition for
this surface,

ﬂ .
a6 3¢ = -
dt ~3cTn VE=0 (A.7)

is introduced in Eq. A.3, which is now written as:

2
v’ I 1 q'dz _ﬂlzi V(z-zl) + alc + V(2z~r) =
[4

z 3z
m O —Q—— 1 - . ...._l_ - _a_;.
Ss 3t (Ic ¢dz) -5, ¢|z1 7t TS ¥t B (a.8)

Introducing Eq. A.7 in Eq. A.8, and using the Liebnitz rule and the same

procedure and assumptions used to obtain Eq. A.6, leads to

3 99y 9 o¢y . 8¢ _ 3y
= (Kxb ax) + 5y (Kyb ay) Sb T (A.9)

-] ot
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which is the governing equation for the flow in a confined aquifer with
a moving interface at the bottom,

The next step in the generalization of Eq. A.9 is to assume that
one of the confining boundaries, for instance the top one, is semi-
pervious. If it 1s also assumed that there is no storage in this semi-
pervious layer, the second term of Eq. A.8 is represented by (see, e.g.,

Bear, 1972):

g, V) - -5 Gt - o

where: K' = vertical permeability of the semi-pervious or leaky layer,
b' = thickness of the leaky layer, (see Fig. A.3)
¢' = plezometric héad on the aquifer above the leaky layer.
Hence Eq. A.9 becomes:

] K! ' _ ] 3 :
-ﬁ(gbia+ (KbJ-- (¢¢)-%bﬁ~mﬁ (A.11)

The general governing equation for the freshwater flow in a confined
aquifer, with or without leakage, and with a moving freshwater/seawater
interface is obtained by introducing into Eq. A.11l terms for a leaky
layer at the bottom and a source/sink flux (e.g., recharge/pumping wells),

and redefining the variable ;. The resulting equation is:

Kl . K.
= ®b —ia tor @B D+ (010 + 52 (47 y) +a e
1 2
W (2) (3 @ (5
- 3¢ _, 2
S.b 3 M 3¢ (A.12)
(6) )
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3

vertical permeabllity of the top leaky layer of thickness
bi (Ki = 0 if top layer is imperviocus):

vertical permeability of bottom leaky layer of thickness

bi (Ké = 0 if bottom layer is impervious or if it is the
interface);

interface depth below mean sea level (MSL), as defined in
Figure A.3. 1Interface '"toe'" is defined by the Intersection
of the interface with the bottom boundary. Inland of "toe"
; equals the depth of the bottom boundary below MSL;
Qﬁ(x—xi)(y-yi) = gource/sink flow of a well located at -

point (x ), and with strength Q [L/T];

i*Y1

Dirac delta function.

A similar equation can be written for the seawater phase. To dis-

tinguish the two equations a superscript £ or ° is used to represent

the freshwater and seawater quantities, respectively.

The physical meaning of the individual terms in Eq. A.12 is:

(1),(2) = Darecy's flux in the x and y direction, respectively;

(3),(4) = leaky flux across the top and bottom leasky layers,

respectively. These terms vanish for impervious confining
boundaries. Term {(4) also vanishes if the lower boundary
of the freshwater zone is the interface. Similarly,

term (3) vanishes for the seawater zone if the top bound-

ary is the interface;

(5) = net recharge or withdrawal at location (xi,yi);
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(6) = change in storage due to variations in the piezometric

head;

(7) = change in storage due to movement of the interface.

A.2.2 Phreatic Aquifers

For a phreatic aquifer with a rate of accretion N(N = -N Eé) the
kinematic boundary condition of the phreatic surface, s = 0, is (Bear,

1972):

ds _ 38 -
dt e Ty, 'Vs=0 (A.13)

where v = velocity of propagation of the free surface. The continuity

equation at this surface is:
(@Q-N)-Vs=n v, Vs

Therefore:

_q-VS-E-VB-n-g—: (A.14)

At the free surface s = ¢ = z_, because the pressure p = 0, and Eq. A.1l4

1!
is equivalent to

SV zaN- 3
ﬂl"l Vz=N-Vz-n3s (a.15)

Introducing Eq. A.15 in Eq. A.3 and taking z, =¢ one can write:

$
VIJ .atdz -N-V z + u-%% +4q zé v (z-zz) =

3:2
at 3t (4.16)

$
= -§ ——(I ¢ dz) + 5.9 -ﬁi—ssqa .
% ¢ )
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Assuming that the Dupuit approximation is wvalid, equipotential
surfaces are vertical, see Bear (1972), and using Liebnitz' rule on
Eq. A. 16 gives:

%(K )+ (1<la—$)+m===(Sb+n)—‘ﬁ (4.17)

X

which is equivalent to Eq. A.6, but for unconfined flow with accretion.
In this equation the saturated thickﬁess b 1s now a function of the
pelzometric head ¢ (b = ¢ —22). From Eq. A. 17 one can easily introduce
the moving interface and leaky conditions as previously done for the

confined aquifer,

A.2.3 General Governing Equations

Using Eqs. A.12 and A.17 and defining the storage coefficlent as

5 Ssb = plastic storativity, for confined aquifers, and

5 (Ssb + n) = elastic storativity plus specific yield, for unconfined

aquifers, the general governing equations are written as (see Fig. A.2):

FRESHWATER:
£ £
f K‘ K!
2 «f b‘-i—)-n» R A B AR
Y bt ¥
1 2
f L
+qfrn=sf %t; -n %E (A.18)
SEAWATER:
8 8
8 ! K'
—<Kb“—L)+ (xb*‘ )+K1—<¢'S—¢9) —= ($5° =¢%) =
b4 oy p18 1
1 2
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5 st (A.19)

The first term on the right-hand side of Eq. A.19 is almost always
negligible,

There are two equations, Eqs. A.18 and A.19, and three unknowns,
¢f, ¢S, t. The equation representing the continuity in pressure at the

interface makes the system of equations soluble, This equation is

P =P (A.20)

where ps, pf are the pressure on the seawater and freshwater sides of the
interface respectively. By definition, the piézometric head in both sides

of the interface 18 expressed as:

£ 8
¢f =-EE + 7 and ¢° = 2;'+ g (A.21)
Y Y

assuming the vertical axis with origin at the intersection of the ground
with the mean sea level, and oriented upwards, see Fig.A.3. Combining

Eq. A.20 and Eq. A.21
Yoo -0 = ¥ %0

or

8 £ £ A
" 'J;¢ +—I-c (A.22)
Y Y
where
3
ay = ¥° -~y

Another way of writing Eq. A.22 is

LaPCRI G A.23
[ = iy ¢ - Ay ¢ (A.23)
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Using Ec. A.22 in Eqs. A.18 and A.19, the two resulting governing
equations in terms of freshwater plezometric head, ¢f, and interface

depth, £, are:

FRESHWATER :
£, £ K'f K'f

0

& &b J;)+ S ®b —L)+ = 01505 + 25 (03765
b! b!
1 2

; £20° | 3y
+q +N=5 ey (A.24a)
SEAWATER: ~

£
LIS M L S VISR BRI RS S

9 X
X " X X y8 Ys oy Yy ay YS YS
.s K8 £
£ A A
R HEE ST R SR Y OLEE S
b' b)
1 ¥ Y 2 Y Y

8 s A 3

B Bt
Y

If instead of Eq. A.22 we use Eq. A.23, the resulting two governing
equations are expressed in terms of both freshwater and seawater piezo-

metric heads, ¢f and ¢s:

FRESHWATER:
f £3 K'f K'f
L «h —‘L)+ = (Kb JL)+ Lo @3%-0h + & eH
b'

bl 2

£ £ 8 8
f £ ag ag
tq +N=(s *“JA‘;) at '“i?ac (A.25a)
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SEAWATER:

1S '8

s K
Lt A 4 L 5 (k% 35+ o (01%0%) + =L (03765
] b'
1 2
R D o T a1 25b
d " Ay st %Ay e | (4.25b)

Similar derivations can be found in Pinder and Page (1977) and Bear

(1979).

A.3 Tensor Notation of the Preferred Governing Equation

For the SWIM code tﬁe form of the governing equations expressed by
Eq. A.25 was preferred because it minimizes the storage required for the
coefficient matrices, and because 1t simplifies the computation involved
with the evaluation of the storage matrix.

At the beginning of the derivation of the governing equatiens in
Section A,2 principal directions of the permeability tensor were assumed
for simplicity of the derivation. Generalizing now to any arbitrary
orientation of the axis x, and x2, Eq. A.25 is written in tensor nota-

1

*
tion as:

%
The repetition of indexes in a term represents a summation, For example:

f 3

3. wf¢ bf_'i)._.._._(l(f bfl‘L.)_Fa_(Kf bf _8_Q__)+
ax X, X X ax X X, X %
S %y 1 1M1 1 1 M1%2 2

f
Q f )
+§_ (K f ax)+3 (Kxfx b gx)

2 2 1 1 2 272
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FRESHWATER :

£ b £ 'm' f £ £
- : 29 o+ —— ’
5 (K j b 5 j) £ (¢ -4 ) +q

+N=

(A.26a)
TS A T tdomel,2

{A.26D)
by ot i,j,m=1,2

These two equations can be interpreted as two degrees of freedom of the
piezomteric head state variable:

t
$= [I:s:l =2 (x,y,t)

Thus, Eq. A.26 can be written -in matrix notation as:

T

1 t .. =
BIE ¢+K, (-9 +Q=§

ar» Q>
nllo

(A.27)
m=]1,2

where the following matrices (_) and vectors () are introduced:

8 _ 39 __
B ’x, 9%, 0 0
8 3_
0 0 ox P,
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1= [kl btk bf 0 o
151 %1%
Ki . of  f . bf 0 0
2*1 X%
0 0 KBbe KS bS
X1%2 X1%9
0 0 K: . b k% p®
2*1 b )
L ~
v oo S A
R' K!S/bY 0
m=l,2
0 K'8/p'8
m ‘m
£
|- [}
$n LM
8 u=],2
¢Il
9= | +n )
8
q
foaX el
- +
2 ™ oy
X sy aX®
- +
n‘,_,nr s Ilmr

T
A superscript represents a transpose quantity.
In order to clarify this expression for readers less familiar with
tensor algebra, the remaining portion of this section presents a step by

step precedurs expanding the simplified Eq. A.27 to the full extent of
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Eq. A.26.

matrix multiplications will be performed one at a time:

B e-| 3
5
3
axz
0
0

Then:
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Qr
A

o
L

@y
M
[

-

Examining the first term on the left-hand side of Eq. A.27,

T




- ] f_
-_—fobfg + kb bf;Lg
R R | R L
f f 3 £ f f f
T S A C S [
XoXy axl XyX,y axz
8 s
Ks bs 3¢ + KS bs 3¢
xlxl axl xlxz ax2
s 5
Ks bs a¢ + Ks bs a¢
L.xle axl x2x2 axz-

Finally:

) £ . f _f
Yl vegy 0 0 ‘Kxxb 3¢ + Kf bfag
1 2 171 9x X, X
1 1%2
3 9
0 0 2 £
i ax, o%, fobf_g_LJr fobfgjL
b L | X%y
8
stbs%@—+xsxb331—
1M1 1%
8
5 3 4 g5 s 3
| ax,; X,Xy
2 £ . f 3t 2 £ f gt
| o ®ex? 2 Yom Kexl? 30t
L TS R L | 3] X% 2
5 3 £ . fa¢f L ae of £ 9t
+ 9 (Kx X b 9K ) + X (Kx X b 9x )
y I | 1 2 %% 2
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The second term on the left-hand side of Eq. A.27

& (-9 = em 0 et -efl -
s.,8| |.,8 .8
i 0 K'm/b'm ¢t ¢
3 ]
= |3 '
£ m
b'm
m=1,2
'8
.. m -
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(A.30)



The right-hand side is:

3 £ 8 f
g —= |gfen - i
= 3t Ay Ay at
8 99"
-0 - s° +n I 29
Ay Ay 3t
L.
B £ f 8 5 7
= (Sf +n 1) % .Y 3
Ay’ Bc Ay 3t
£ f 8 8
-n 1 3¢ 8 Yy 3%
n Ay 3t * (s +n A ) at

(A.31)

Adding Eq. A.28 through A.31 the equivalent to Eq. A.27 1is obtained:

- f -
£ K
3 f £y L m o f f £
ax, (Kx 2 w7t £ (#'g¢) + g +N
1% if b
m
8 K8
LR - SR RO Y
1 %% 3 b
L. m - o
PP
i LS =2 i rad i T
YE af s 8 8
ol e SR A v T ] =L.2
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A4 Summary

The general differential governing equations for the groundwater
flow in aquifers with seawater intrusion have been derived, in terms of
freshwater piezometric head and interface depth, and in terms of freshwater
and seawater piezometric heads. The short tensor form of this last equa-

tion has also been developed:

3%
T - .
BIB ¢+K Q- +2=55 . (a.27)
m=1,2

In the derivation of these equations the following assumptions have

been considered:

1) Immiscible interface separating the two fluids; -

2) Darcy's Law is valid;

3) Specific storage and horizontal permeabllity variations in the
vertical direction are negligible;

4) Dupuit approximation for phreatic aquifers and essentially
horizontal flow for confined aquifers. Vertical flow considered
only in the case of leakage from adjacent aquifers or in case
of accretion in phreatic aquifers.

Inherent to the physical process it has also been assumed that both

freshwater and seawater have constant density, and are homogeneous and
isotropic fluids filling completely all the voids in the saturated zone

of the porous media.
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Appendix B
CHECK OF THE POSITIVE SEMI-DEFINITENESS
OF THE EFFECTIVE CONDUCTIVITY MATRIX

USED IN SWIM

This appendix discusses the positive semi-definiteness of the
effective conductivity matrix defined in Table 3.1, which is required to
solve the system of equations uwsing the ET D L method. A matrix is sald
to be positive definite if all eigenvalues are positive. For ease
of calculation the analysis presented here is in terms of elemental
matrices and local coordinates. If the typical element matrix is posi-
tive definite, so too the global matrix.

The effactive conductivity matrix 5* as defined in Chapter 3 is
formed by the summation of the conductivity matrix l;, storage matrix
divided by the time step M = C/at and the third type boundary condition
matrices él and Ly. Since these last two matrices have all positive
elements they are not considered_for this analysis of the eigenvalues
of the effective conductivity matrix--in any case they slightly strengthen
the positive definiteness of the global matrix. In order to simp-
1ify the calculations and without loss of generality it is assumed that
both freshwater and seawater transmissivity and hydraulic conductivity
are the same, that elastic storativity is negligible, and that y = v
= 1.0 g/cm3, ys =y + Ay and Ay = 0.03, Under these assumptions the

element matrices for a 4 node element are defined as:

1-[ FrBu-w| FBu 6.1

A
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H-—E=-l B S B dA (B.2)
= At 4t ) = == *
A
where:
- hil —p XXAY =
S s " oy
Ytay Ytay
-n n
Ay Ay
= BY, -
AY 1 £
-£ £
e =14+
Y

B-2[a+t) o -+e) 0 --®) 0 (-8 O
{(1+1) 0 {1-1) ¢ -{1-r) 0 =({I+r) O

0 {1+8) 0 =(1+s) 0 -{1-s) 0 (1-s)

Lo am o @an o -an o ey

i-3[amas 0 a-nass) o
0 (1+r) (1+s) 0 {1-1)(1+s)
(1-r)(1-8) 0 (1+r) (1-8) 0
0 (1-r) (1-8) 0 (1+r)(1-s)

r and s are the lecal coordinate'systam.
Performing the matrix multiplications in Eq, B.1l and B.2 and the

integration one obtains:
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=
Ol

16X+12Kb ~16Xs

16Xe+12Kb

-1 0

-1
“4e 2 =2
b4e =2¢ 2e
4 =he
4e

BX-3Kb
-BXe

16X+12Eb

Adding these two matrices and defining X =

-

-8Xe
8Xc-b
-16Xe

16Xc+12Kb

-2 0 -1
o -2 0
-1 0 -2
-1 0
0 -1
4
1l -e 2
-€ e -2¢
2 -2¢ 1
=2e 2¢ =€
& -4e 2
4e =2¢
4
_ny
AyAt
4X-6Kb  -4Xe
-4Xe 4Xe-6Kn
8X-3Kkd  -8Xe
-8xe ' 8Xe-3Kb
15x+1zx$ -16Xe
16Xe+12Kb
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4X-6Kb
~4%¢
8%-3Kb
-BXe

16X+12Kb

. BXe-3Kb

(B.3)

(B.4)

-BXe

~ixe
&Xe-6Kb
(B-5)
-8%e

8Xe-3Kb

=16Xe

16X=+12ﬂﬂ



The calculations presented below for K* ignore the constant factor
1/36 in the previous equation.

The eignevalues for matrix II s Eq., B.3, assuming Kb = 1, are:

A=A, = 0.0

b
I
-
]

12.0

Ag = AB = Ry = 18 = 18.0

The fact that two of the eigenvalues are zero means that the I matrix
cannot represent the so called rigid body modes found in structures.
That is, the solution needs to be anchored for both freshwater and
seawater phase by imposing first (or third) type boundary conditions.
This can be achieved by adding large numbers, say 106, to two of the

diagonal terms. Doing so leads to the eigenvalues:

ll = XZ = 3.804

Ay = A, = 14.196

As = A = 18,000 '
A, = 2 = 10°

This means that for any value of permeability, which 1s always positive,
matrix Iis always positive definite, and the solution of a steady
state problem is always defined.

50 far the eigenvalues have been computed analytically due to the
simplicity of the matrix; however, from this point on the eigenvalues

will be computed using numerical methods. Therefore, some roundoff and
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truncation errors may result from the single precision digits used in
the computer packages emploved,
Assuming n = At and neglecting the factor 1/9 in Eq. B.3 the eigen-

values for matrix M = C/At (Eq. B.4) are:

Ay = A, = ~6.043

1 2
A, = -2.014
A, = -1,813

Ae = 2,726

36 = 17 = 818.0
Ag = 245.4

The four negative elgenvalues are not surprising given the type of
matrix involved.

The results of the eigenvalues of matrix 5* for different values
of the dimensionless term t = KbAt/nL2 are presented in Table B,l, where
L=l is the half length of an element side in local coordinates. =] is
an extreme case of a very low transmiseivity and very small time step
which has no real meaning but shows that the matrix g* 1s not always
positive definite. =3, 10 are more realistic values and they can be
used to test some experimental results, however these values of t are
still too small compared with common field values, 5* is now positive
definite and its positive definiteness increases with t. 1t = 15000 can
occur for the case of Kb = 100 mzlday, n= 0.2 and At = 30 days, which
are common for a field problem, T = 17 x 10& is obtained when larger
values for transmissivity and time step are used, At = 1 year for

example. In these cases the transmissivity matrix I dominates the
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Table B.1

*
Eigenvalues of K for Different Values of 1

T

eigenvalues 1 5 10 15000 17 x 104
v, ~1.07 .92 23.65 379.6 1.76 x 10°
Y, 1.07 | 13.5 138.0 392.9 3,76 x 10°
Y, 12.05 | 16.95 | 174.2 | 1420, 1.42 x 10°
Y, 457.8 | 102.8 580.7 | 1423. 1.42 x 10°
v 836.0 | 181.6 998.1 | 1800. 1.8 x 10
Y 2014. | 406.3 | 2053, 1805, 1.8 x 10*
Y 10® 10® 10° 108 108
Y 10° 108 10% 10° 108

* .
storage matrix M and one can see that the eigenvalues of K are the eigen-

values of _ multiplied by Kb.

For all pratical purposes the effective conductivity matrix 5* is
positive definite and the use of any Gauss eliminationm technique to solve
the system of equations 1s appropriated. In some cases, however, the the
non-positive definiteness of the effective conductivity matrix plays a role,
and 5* cannot: be decomposed and solved using Gauss elimination. In these

cases the storage matrix can be lumped (an option available in SWIM, see

sections 3.6, 4.3.4.6, and 5.7) and the solution can proceed.
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APPENDIX C
INITIAL AND BOUNDARY CONDITIONS USED IN THE
1-D GRAVITATIONAL SEGREGATION PROBLEM DESCRIBED IN CHAPTER 4

Initial Conditions *

x oF 4 ¢°
(m) (m) (m) (m)
< -16 5.125 ~10.0 4.875
~12 5.12305 - 8,75 4.90430
- 8 5.11718 - 7.5 4.92968
-4 5.10742 - 6.25 4.95117
0 5.09375 - 5.0 4.96875
4 5.07617 -3.75 4.98242
8 5.05469 ~2.5 4.99219
12 5.02930 -1.25 4.99805
>16 5.0 0.0 5.0

¢f freshwater plezometric head

L 1interface depth

¢B seawater plezometric head calculated using Eq. 3.3 that is:

8% = ayg + yoof

(= 1.0g/ca’

Ay = 0.0253/cm3

*
See Figure C.1 .
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-10. 1
[} 1 3
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Figure €.1 - Initial Conditions Used in the Gravitational Segregation

Problem. a) Piezometric Heads; b) Interface Elevation.

244



Boundary Conditions

¢f = 5,125 m

< at x = a

¢ = 4.875 m

a = -68m for the simulation described in Section 4.3.3
using a longer grid (136 m)

a ==50m for the simulation described in Section 4.3.4

using a shorter grid (100 m)
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